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Abstract

Failure detectors are a service that provides (ap-
proximate) information about process crashes in a dis-
tributed system. The well-known “eventually perfect”
failure detector, 3P , has been implemented in partially
synchronous systems with unknown upper bounds on
message delay and relative process speeds. However,
previous implementations have overlooked an important
subtlety with respect to measuring the passage of time
in “celerating” environments, in which absolute process
speeds can continually increase or decrease while main-
taining bounds on relative process speeds. Existing im-
plementations either use action clocks, which fail in ac-
celerating environments, or use real-time clocks, which
fail in decelerating environments. We propose the use
of bichronal clocks, which are a composition of action
clocks and real-time clocks. Our solution can be read-
ily adopted to make existing implementations of 3P ro-
bust to process celeration, which can result from hard-
ware upgrades, server overloads, denial-of-service at-
tacks, and other system volatilities.

1 Introduction

A failure detector can be viewed as a distributed or-
acle that can be queried for (potentially incorrect) in-
formation about process crashes. Despite such unreli-
ability, failure detectors can solve many classic prob-
lems that are not solvable in crash-prone asynchronous
message-passing systems (for example, fault tolerant
consensus [5], and wait-free dining [21]).

Failure detectors were introduced by Chandra and
Toueg in [5] to circumvent the impossibility of fault-
tolerant consensus in asynchrony [12]. This seminal
paper introduced a hierarchy of eight failure detector

classes. Subsequent work introduced several other fail-
ure detector classes (e.g., Heartbeat [1], Marabout [13],
Omega [3], Accrual [15], and Trusting [6]).

This paper focuses on the eventually perfect failure
detector – 3P – defined in the original Chandra-Toueg
hierarchy. Informally, 3P can give arbitrary (incorrect)
information about process crashes for a finite computa-
tional prefix. Eventually, however, it provides perfect
information about process crashes. Note that time after
which 3P starts providing perfect information is poten-
tially unknown. More precisely, 3P satisfies the follow-
ing properties [5]:

• Strong Completeness: Every crashed process is
eventually and permanently suspected by every
correct process.

• Eventual Strong Accuracy: For each run, there
exists a time after which no correct process is sus-
pected by any correct process.

The failure detector 3P is sufficiently powerful to
solve many classic problems in distributed computing,
including fault tolerant consensus [5], stable leader elec-
tion [2], quiescent reliable communication [1], wait-
free contention management [14], crash-locality-1 din-
ing philosophers [20], and wait-free dining under even-
tual weak exclusion [21].

However, 3P cannot be implemented in purely asyn-
chronous systems. It requires the underlying system to
provide some temporal guarantees on communication
and computation. Such systems are said to be partially
synchronous.

1.1 Partial synchrony

As mentioned above, system models providing cer-
tain temporal guarantees on communication and com-
putation are said to be partially synchronous ([7, 8]).



Among the various partially synchronous models de-
fined in [7] and [8], the most popular ones are denoted
M1 andM2 (denoted as such in [5]).

Informally stated, in modelM1, there exist unknown
bounds on relative process speeds and message delay,
and these bounds hold perpetually. ModelM2, on the
other hand, states that there exist known bounds on rela-
tive process speeds and message delay, but these bounds
hold only eventually. In addition toM1 andM2, there
is a third popular model, denoted M3. The model
M3, defined in [5], is derived from M1 and M2, and
states that there exist unknown bounds on relative pro-
cess speeds and message delay, and these bounds hold
only eventually. The models M1, M2, and M3, are
collectively referred to asM∗.

1.2 Process Celeration

It is widely believed that 3P can be implemented
in the M∗ models. While this belief happens to be
true, implementations of 3P in such models have over-
looked an important subtlety with respect to measuring
the passage of time in celerating environments, wherein
absolute process speeds can continually increase and/or
decrease while maintaining bounds on relative process
speeds. Such traditional implementations of 3P can
precipitate an infinite number of failure detector mis-
takes in celerating environments.

1.3 Contribution

We show that existing implementations of 3P inM∗
models, although correct in static environments, fail to
behave correctly in celerating environments. We define
a new type of clock called bichronal clocks, and show
that these clocks can be used to implement 3P in such
celerating partially synchronous environments. Addi-
tionally, we discuss the advantages of bichronal clocks
in improving scalability and performance of 3P dur-
ing volatile periods like hardware upgrades, denial-of-
service attacks, and server overloads.

2 Existing implementations of 3P inM∗

There are several implementations of 3P inM∗ and
other models of partial synchrony in the existing liter-
ature [5, 19, 4, 17, 10, 2, 18]. These implementations
are based on the deduction that upper bounds on rela-
tive process speeds and message delay translate to an
(unknown) upper bound on end-to-end, and round trip,
communication delay. The end-to-end communication

delay is the duration between the send of a message
and its receipt. Similarly, a round-trip communication
delay is the duration between the send of a message,
and the receipt of its corresponding ack. These bounds
on communication delay are adaptively estimated us-
ing some form of adaptive timers. Such adaptive timers
start with some initial estimate of the bound on end-to-
end (or round trip) communication delay and eventually
converge to the de facto bound, after which correct pro-
cesses are never suspected as crashed.

These adaptive timers use one of two techniques to
measure time locally:

• Action Clocks: One technique to measure the pas-
sage of time is to count the number of actions ex-
ecuted locally at each process. Action clocks ac-
complish this by incrementing their clock value by
one every time the process takes a step.

• Real-time Clocks: Alternatively, each process is
assumed to have a real-time local clock which mea-
sures time with bounded drift. In practice, these
clocks are realized by hardware devices such as
crystal oscillators. Note that the real-time clocks
need not measure real time perfectly. They can tick
at different rates at each process. The only require-
ment is that there exist some bound on their drift.

3 End-to-end communication delay inM∗

Note that the correctness of implementations cited in
Section 2 depends on the existence of bounds on end-to-
end communication delay. While the existence of such
bounds is fairly straightforward in non-celerating envi-
ronments, demonstrating the same in celerating environ-
ments (where processes can accelerate and/or decelerate
continually) is more subtle.

3.1 Non-celerating M∗ environments.

In non-celerating M∗ environments, the process
speeds, by definition, do not accelerate or decelerate
continually. In other words, there exist some (potentially
unknown) upper and lower bounds on absolute process
speeds. Given such bounds on absolute process speeds,
in conjunction with an upper bound on message delay,
demonstrating an upper bound on end-to-end communi-
cation delay is straightforward1.

1Note that time can be measured either in real-time clock ticks or
in action clock ticks. Consequently, we must demonstrate the upper
bound on end-to-end message delay in both types of clocks.



Action Clocks. Since we know that there exists
an upper bound on absolute process speeds in non-
celerating environments, there exists an upper bound on
the number of actions a process can execute while a mes-
sage is in transit (note that there exists an upper bound
on message delay). Additionally, sending and receiving
a message is assumed to be atomic and hence requires
exactly one local action each. Since there exists an upper
bound on relative process speeds, there exists an upper
bound on the number of actions executed at each pro-
cess while a message is either being sent or received. In
other words, there exists an upper bound on the number
of action clock ticks while a message is being sent, is
in transit, and is being received. That is, there exists an
upper bound on end-to-end message delay as measured
by an action clock.

Real-time Clocks. A lower bound on absolute pro-
cess speeds in non-celerating environments implies an
upper bound on the real-time duration for a message to
be generated and sent, as well as an upper bound on the
real-time duration to complete the receipt of the mes-
sage. Since the upper bound on message delay is as-
sumed, there exists an upper bound on end-to-end com-
munication delay, as measured by real-time clocks.

3.2 Celerating M∗ environments

Celerating environments allow processes to acceler-
ate and/or decelerate continually. Hence, absolute pro-
cess speeds for (live) processes may be unbounded in
such environments. This makes demonstrating an upper
bound on end-to-end communication delay problematic.

Consider end-to-end communication in three such
M∗ environments: accelerating environments, deceler-
ating environments, and environments that are both ac-
celerating and decelerating (denoted *-celerating).

Accelerating environments. In acceleratingM∗ en-
vironments, processes may accelerate continually, but
they do not decelerate continually. In other words,
while there may be no upper bound on absolute pro-
cess speeds, there exists a lower bound on absolute
process speeds. This lower bound on absolute process
speeds (coupled with the upper bound on relative pro-
cess speeds and the upper bound on message delay)
yields an upper bound on end-to-end communication de-
lay in terms of real-time clock ticks. However, there ex-
ists no upper bound on end-to-end communication delay
in terms of action clock ticks (detailed discussion in Sec-
tion 4).

Decelerating environments. In deceleratingM∗ en-
vironments, processes may decelerate continually, but

they do not accelerate continually. In other words,
while there may be no lower bound on absolute pro-
cess speeds, there exists an upper bound on absolute
process speeds. This upper bound (coupled with the
upper bound on relative process speeds and the upper
bound on message delay) yields an upper bound on end-
to-end communication delay in terms of action clock
ticks. However, there exists no upper bound on end-to-
end communication delay in terms of real-time clocks
(detailed discussion in Section 4).

*-celerating environments. In M∗ environments
where processes may accelerate and decelerate contin-
ually, there exists neither an upper bound, nor a lower
bound, on absolute process speeds. This results in un-
bounded end-to-end communication delay in terms of
both real-time clocks and action clocks.

Such unbounded end-to-end communication delay in
terms of either real-time clocks, or action clocks, or
both, in celerating environments is referred to as the cel-
eration problem.

4 The celeration problem

In this section we describe the celeration problem by
demonstrating the following:

• In accelerating M∗ environments, the end-to-end
communication delay of messages is unbounded
when denominated in ticks of an action clock.

• In decelerating M∗ environments, the end-to-end
communication delay of messages is unbounded
when denominated in ticks of a real-time clock.

4.1 Action clocks in accelerating envi-
ronments

In accelerating M∗ environments, the end-to-end
communication delay is unbounded when denominated
in ticks of an action clock. Informally, the argument is as
follows: As processes accelerate, their action clocks tick
faster. Consequently, there are an increasingly greater
number of action-clock ticks per unit real-time. There-
fore, although there exists an upper bound on real-time
message delay, an action clock can tick an unbounded
number of times while a message is in transit. Since
message delay is unbounded in terms of action clock
ticks, so is end-to-end communication delay.

More formally: Consider an accelerating M∗ envi-
ronment. Let time be measured locally by action clocks.
For the purpose of contradiction, assume that there ex-
ists an upper bound on message delay as measured by an



action clock. Let such a bound be k. Note that theM∗
environment guarantees an upper bound on message de-
lay in real time. Let this bound be ∆ time units. Since
processes are continually accelerating, eventually (say,
after real time t) process speeds exceed d k

∆e actions per
unit real time. Let some message m sent after time t
experience a delay of ∆ real-time units. The message
delay for m measured in action clock ticks exceeds k
(because d k

∆e·∆ ≥ k). However, this contradicts our as-
sumption that the upper bound on message delay as mea-
sured by an action clock does not exceed k. This implies
that message delay measured in action clock ticks is un-
bounded. Therefore, in acceleratingM∗ environments,
the end-to-end communication delay of messages is un-
bounded when denominated in ticks of an action clock.

4.2 Real-time clocks in decelerating en-
vironments

In decelerating M∗ environments, the end-to-end
communication delay is unbounded when denominated
in ticks of a real-time clock. Informally, the argument
is as follows: as processes decelerate, each action takes
increasingly longer to execute. There is no upper bound
on the time taken to execute an action. Since it takes
at least one action to generate and to receive a message,
there is no upper bound on the time taken to generate a
message and to receive a message. Consequently, there
is no upper bound on end-to-end communication delay.

More formally: Consider a deceleratingM∗ environ-
ment. Let time be measured locally by perfect real-time
clocks2. For the purpose of contradiction, we assume
that there exists an upper bound on real-time end-to-
end communication delay. Let this bound be k real-
time units. As processes decelerate, an increasingly
greater duration of time elapses between consecutive
steps. Eventually (say, after time t), the time between
consecutive steps exceeds k. Since it requires at least
one action to send or receive a message, after time t,
generation of a message m takes longer than k real-time
units. Consequently, the end-to-end communication de-
lay for m exceeds k. This, however, contradicts our ear-
lier assumption that end-to-end communication delay is
bounded above by k. In other words, in deceleratingM∗
environments, the end-to-end communication delay of a
message is unbounded when denominated in ticks of a
real-time clock.

2Although it is not necessary for the real-time clocks to be perfect,
we strengthen the clock specification in order to strengthen the nega-
tive result

5 Impact of the celeration problem

In this section, we discuss the impact of the celer-
ation problem on failure detector correctness and sys-
tem model specifications. As explained below, many
existing implementations of failure detectors fail to be-
have correctly in celerating environments. This is symp-
tomatic of how time is measured in these implementa-
tions. However, it is possible to circumvent this prob-
lem by either strengthening existing system models, or
by adopting alternate system models. In fact, both ap-
proaches have been explored in recent work on failure
detector implementations in partial synchrony.

5.1 Correctness of failure detector im-
plementations

Recall from Section 2 that the existing implementa-
tions of failure detectors like 3P adaptively estimate the
upper bound on end-to-end, or round-trip, communica-
tion delay. This upper bound is measured using either
action clocks or real-time clocks. However, in celerat-
ing environments (as described in Section 4) the use of
either clock (in isolation) is problematic.

Consider the 3P implementations that use action
clocks. In runs where processes accelerate continu-
ally, although there exists an upper bound on end-to-end
communication delay in real-time ticks, there is no up-
per bound on action-clock ticks. Hence, such implemen-
tations fail in accelerating environments.

On the other hand, consider the 3P implementations
that use real-time clocks. In runs where processes decel-
erate arbitrarily, although there exists an upper bound on
end-to-end communication delay when denominated in
action-clock ticks, there is no upper bound on the num-
ber of real-time ticks. Hence, such implementations fail
in decelerating environments.

That is, regardless of the choice of clock to measure
time (either action clocks, or real-time clocks), these
3P implementations fail in celerating environments.

5.2 Existing approaches to failure de-
tector correctness

Arguably, the celeration problem is not unknown to
the research community. Recent work on failure detec-
tors have addressed this problem by either (a) strength-
ening the system model to preclude certain celerating
runs which would otherwise precipitate incorrect behav-
ior, or (b) adopting alternate system models which en-
capsulate process celeration by subsuming restrictions



on process speeds in restrictions on composite system
behavior. We briefly visit both the approaches.

5.2.1 Strengthening system models

Recently proposed models like the Finite Average Re-
sponse Time (FAR) model [11] and the Average De-
lay/Drop (ADD) model [23] make additional assump-
tions on absolute process speeds to circumvent the cel-
eration problem. For instance, the FAR model [11]
assumes an upper bound on absolute process speeds3.
This assumption precludes continual acceleration of pro-
cesses and allows failure detector implementations in the
FAR model to use action clocks which are immune to
continual process deceleration. In contrast, the ADD
model [23] assumes a lower bound on absolute process
speeds. This assumption precludes continual decelera-
tion of processes and allows failure detector implemen-
tations in the ADD model to use real-time clocks which
are immune to continual process acceleration.

5.2.2 Alternate system models

Alternate system models have been proposed that en-
capsulate process celeration in alternate specifications
of system behavior, thereby voiding the celeration prob-
lem. Specifically, such models do not explicitly re-
strict message delay or process speeds. Instead, they
encapsulate restrictions on message delay and process
speeds in restrictions on composite system behavior (de-
scribed below). Notable examples include the Asyn-
chronous Bounded-Cycle (ABC) model [22] and the
Theta model [16] which allow processes to accelerate
and/or decelerate continually.

The ABC model imposes a restriction on the ratio of
the number of messages that can be exchanged between
pairs of processes in certain “relevant” segments of an
asynchronous execution. On the other hand, the Theta
model imposes a restriction on the ratio of the end-to-
end communication delay of messages that are simul-
taneously in transit. Note that the ratio of the number
of messages exchanged between processes and the ra-
tio of end-to-end communication delay experienced by
messages is determined by message delay and process
speeds. Therefore, any restriction on such composite
system behavior ultimately imposes restrictions on mes-
sage delay and process speeds.

3In fact, the FAR model assumes that there exists a lower bound
on the time it takes to increment an integer. This assumption ensures
that the action clock (referred to as “weak clock” in [11]) does not
accelerate continually.

5.3 Summary

Existing 3P implementations in M∗ and related
models fail to behave correctly in celerating envi-
ronments. Clearly, the celeration problem can be
sidestepped inM∗ models by imposing bounds on ab-
solute process speeds. Alternatively, the celeration prob-
lem can be voided by abandoningM∗ models in favor
of models like the ABC model or the Theta model. But
is either approach necessary to overcome the celeration
problem? Is it possible to implement 3P inM∗ models
without any additional assumptions? We answer the lat-
ter question in the affirmative by implementing 3P in
M∗ without any additional assumptions.

6 Solving the celeration problem

In this section we introduce a new technique to over-
come the celeration problem without assuming lower or
upper bounds on absolute process speeds. Our solution
is based on a composition of action clocks and real-time
clocks and is motivated by the following observations:
Message delay is bounded above in terms of real time.
Therefore, there exists an upper bound on the number
of ticks of a real-time clock while a message is in tran-
sit. Similarly, relative process speeds are bounded as
well. Therefore, regardless of process celeration, there
exists an upper bound on the number of local actions ex-
ecuted while messages that have been delivered at the
recipient’s receive buffer are being processed. In other
words, there exists an upper bound on the number of ac-
tion clock ticks in the duration it takes for a message to
be processed. Therefore, running real-time clock timers
when messages are in transit, and running action clock
timers when messages are being processed, should make
3P implementations immune to the celeration problem.
We explore this intuition in the remainder of this section.

6.1 System model

Before proceeding to the 3P implementation, we ex-
plicitly define the M∗ system model under which the
failure detector will be implemented. The specification
ofM∗ models has been marginally modified (especially
in the definition of global time) from [7] and [8] in order
to simplify analysis. However, the specification still re-
flects the basic behavior of unknown bounds on message
delay and relative process speeds which hold eventually.

• Processes. The system has a finite fixed set of
processes Π. Processes execute actions in atomic



steps. In an atomic step, a process receives at most
one message from each process, makes a state tran-
sition, and sends at most one message to each pro-
cess.

• Time. We posit the existence of a continuous New-
tonian global time4 measured by a fictitious global
clock. The processes do not have access to the
global clock; it is merely a modeling device.

• Runs. A run consists of an infinite sequence of
steps taken by processes while executing an algo-
rithm. For terminating algorithms, processes are
modeled as having reached a final state Sf with an
infinite sequence of (no-op) steps thereafter so that
the process transitions from Sf to Sf . Note that
not all processes may execute an infinite sequence
of steps. Only correct, i.e., non-faulty, processes
execute an infinite sequence of steps.

In any given run, each atomic step taken by a pro-
cess is associated with a unique global time in-
stance called the occurrence time, which is the time
at which the atomic step is executed. Such a se-
quence of occurrence times at each process is non-
decreasing, and for every finite closed interval of
time [t1, t2] (where t1 ≤ t2), there are only finitely
many steps whose occurrence time is within that
interval5.

• Faults. In each run, processes are either correct or
faulty. Correct processes execute actions accord-
ing to their algorithm specification, and never fail.
Faulty processes, on the other hand, fail after finite
time. Processes can fail only by crashing, which
occurs when a process ceases execution without
warning and never recovers. Any process that is
not crashed is considered to be live.

• Channels. Processes send and receive messages to
each other through channels. Each process is as-
sumed to be connected to all the processes in the
system by bi-directional reliable channels.

• Clocks. Processes are assumed to have access
to a local real-time clock which measures time in
discrete integer valued steps with some unknown

4Traditionally, global time is assumed to be discrete. However, in
celerating environments processes are allowed to accelerate arbitrarily.
Modeling time as a discrete entity implies that accelerating processes
can take multiple actions in a single time tick. This implication makes
system analysis problematic. Hence, for the ease of understanding and
analysis, we assume a continuous global time base.

5This specification rules out the possibility of accelerating pro-
cesses exhibiting “Zeno behavior”’.

bound D on the drift rate6. A clock is said to have
a drift rate of D, if the following holds true: for
every interval of t global time units, the clock mea-
sures no less than ( t

D ) time units and no greater
than (t ·D) time units.

• Message delay. Channels are assumed to deliver
messages at the recipient’s receive buffer within
some unknown bound ∆ global time units on delay.
We assume no lower bounds on message delay.

• Message buffering delay. Message buffering de-
lay is the duration between the time that a message
is delivered at the recipient’s receive buffer and the
time that the message is actually processed by the
receiving process. The message buffering delay is
assumed to be bounded above by B local actions
at the receiving process, where B in unknown. In
other words, if a message m arrives at a process p’s
receive buffer at time t, then m is processed by p
within the next B local actions at p.

• Relative process speeds. The relative process
speeds are assumed to be bounded above by (an un-
known) Φ, i.e., in the duration that a correct process
executes Φ atomic steps, each correct process exe-
cutes at least 1 atomic step. Note that absolute pro-
cess speeds are not bounded, and processes may ac-
celerate and/or decelerate continually while main-
taining the bound on relative process speeds.

6.2 Bichronal clocks

We introduce a new clock called a bichronal clock. It
is a composition of an action clock and a real-time clock.
A bichronal clock has the following properties:

• Composition: A bichronal clock consists of an ac-
tion clock a and a real-time clock r.

• Two-dimensional Time: The time on a bichronal
clock is the vector 〈a.time, r.time〉 where a.time
is the value of the action clock, and r.time the
value of the real-time clock. These time compo-
nents are independent and will not be ordered lexi-
cographically.

Similarly, a bichronal timer consists of an action
clock timer and a real-time clock timer. It counts down
from a given value (at, rt) where at is the starting value
for the action clock timer, and rt is the starting value for

6Note that the local real-time clocks at each process tick indepen-
dently. The clocks need not be synchronized, and there need not be a
bound on the drift rate across all runs.



the real-time clock timer. A bichronal timer is said to
have timed out iff both the action clock timer and the
real-time clock timer have timed out. The pseudo-code
for a bichronal timer is shown in Fig. 1.

class bichronalT imer()
actionClockTimer a
realtimeClockTimer r

1 : method start ( integer actionT ime, realT ime)
2 : a.start(actionT ime)
3 : r.start(realT ime)
4 : upon (a.expire() and r.expire())
5 : send timer expiry notification
6 : end method
7 : method stop ()
8 : a.stop(); r.stop()
9 : end method

Figure 1. Implementation of a bichronal
timer.

Bichronal timers satisfy the following two lemmas
which are based on their specification.

Lemma 6.1. If a bichronal timer tmr starts with a value
(ta, D · tr), then tmr runs for at least tr global time
units.

Proof. If a bichronal timer tmr starts with a value
(ta, D · tr), then it starts two timers concurrently: an
action clock timer a with value ta, and a real-time clock
timer r with value D · tr. The timer tmr does not ex-
pire until both a and r expire. But r expires only after
D · tr real-time clock ticks. Therefore, tmr does not
expire until D · tr real-time clock ticks. However, r has
a bound D on drift rate, hence r takes at least tr global
time units to tick D · tr times. In other words, tmr runs
for at least tr global time units.

Lemma 6.2. If a bichronal timer tmr starts with a value
(ta, D · tr), then tmr runs for at least ta local actions.

Proof. If a bichronal timer tmr starts with a value
(ta, D · tr), then it starts two timers concurrently: an
action timer a with value ta, and a real-time clock timer
r with value D · tr. The timer tmr does not expire un-
til both a and r expire. But a expires after ta action
clock ticks. Therefore, tmr runs for at least ta local ac-
tions.

The idea of composing multiple time bases into a
composite time base is not new. For instance, Fetzer

and Raynal proposed such a composition in [9] called
Elastic Vector time. Like a bichronal clock, elastic vec-
tor time is a composition of two scalar time bases: log-
ical time and real time. However, the main distinction
between the compositional techniques of elastic vector
time and bichronal clocks is the following: In elastic
vector time, the logical clocks are updated to the value
of the real time clocks infinitely often (subject to cer-
tain conditions). On the other hand, in bichronal clocks,
the two time bases (logical and real) run independently
of each other and are not correlated in any way (except
insofar as both time bases eventually move forward in
non-faulty processes).

6.3 Implementing 3P

In this section, we present an implementation of 3P
inM∗ using bichronal clocks. Let the set of processes in
theM∗ system be Π. At each process p in Π, the action
system 3P-exec (in Fig. 2) for the local 3P module is
executed for each process q that p monitors. Thus, each
process p runs |Π| instances of 3P-exec.

The algorithm shown in Fig. 2 is a ping-ack based
implementation of 3P . It uses a bichronal timer tmr,
and an initial estimate on the timeouts for the bichronal
timer (timerV alue). The algorithm starts by executing
Action 1 in which p sends a ping to process q, starts the
bichronal timer tmr, and sets the variable phase to 1.
If tmr expires before receiving an ack from q, Action 2
is enabled. In Action 2, if phase 6= 4, then p restarts
tmr and increments phase else p suspects q as having
crashed. If p receives an ack, Action 1 is enabled. In Ac-
tion 1, if q is suspected as having crashed, then it could
be a false suspicion (because p just received an ack from
q). Hence, p trusts q, and increments the estimate on
timeouts on the bichronal clock. Process p then sends a
new ping message to q, and restarts tmr. In Action 3, p
sends an ack for every ping that it receives from q.

7 Proof of correctness

The algorithm runs a ping-ack protocol between p
and q. The ping-ack protocol consists of a sequence
of ping-ack transactions, each of which consists of four
phases: ping-in-transit phase, ack-generation phase,
ack-in-transit phase, and ack-processing phase, in that
order. The ping-in-transit phase begins when p sends a
ping to q, and ends when the ping is delivered to q’s re-
ceive buffer. The ack-generation phase begins when the
ping is delivered to q’s buffer, and ends when q sends
an ack (for the ping) back to p. The ack-in-transit phase



service 3P-exec(process q)
bichronalTimer tmr // Bichronal timer for adaptive timeout
integer timerV alue← 1 // Some initial estimate
integer phase← 0 // Each ping-ack transaction has 4 phases (1 thru 4). Phase 0 is the initial value
initially trust q // Start by trusting q as being correct

1 : { (upon receive 〈ack〉 from q) or (phase = 0)} −→ Action 1
2 : if ( suspect q) // False suspicion
3 : trust q // Trust upon receiving an ack
4 : timerV alue← timerV alue + 1 // Increment timer value
5 : send 〈ping〉 to q // Send a ping and wait for an ack
6 : tmr.start(timerV alue, timerV alue) // Start bichronal timer
7 : phase← 1 // Transit to Phase 1

8 : { upon tmr.expire() } −→ Action 2
9 : if (phase = 4) // Should have received an ack by the end of 4 phases
10 : suspect q // Suspect upon timer expiry
11 : else
12 : phase← phase + 1 // Transit to the next phase, i.e., from phase 1 to 2, 2 to 3, or from phase 3 to 4
13 : tmr.start(timerV alue, timerV alue) // Restart the bichronal timer in the new phase

14 : { upon receive 〈ping〉 from q } −→ Action 3
15 : send 〈ack〉 to q // Upon receiving a ping, send an ack

Figure 2. Implementation of 3P inM∗ using a bichronal timer

begins when q sends the ack to p, and ends when the ack
is delivered to p’s receive buffer. The ack-processing
phase begins when the ack is delivered to p’s receive
buffer, and ends when a new ping is sent to q.

Note that the ping-in-transit phase and the ack-in-
transit phase can last at most ∆ global time units each.
It takes q at most B local actions to generate an ack after
the ping has been delivered to its receive buffer. Dur-
ing this time, p can execute at most B · Φ local actions
each. Therefore, the ack-generation phase can last at
most B · Φ local actions at p. Since it takes at most
B local actions at p to process an ack after it has been
delivered to its receive buffer, the ack-processing phase
can last at most B local actions at p.

Intuitively, in the algorithm in Fig. 2, the variable
phase strives to follow (lag behind) the corresponding
4 phases of each ping-ack transaction. Eventually (and
this is demonstrated in the proofs), when phase = 1,
the current ping-ack transaction is in the ping-in-transit
phase or later; when phase = 2, the current ping-ack
transaction is in the ack-generation phase or later; when
phase = 3, the current ping-ack transaction is in the
ack-in-transit phase or later; and when phase = 4,
the current ping-ack transaction is in the ack-processing
phase, or has already terminated.

In order to prove correctness, we have to show that
the algorithm in Fig. 2 satisfies the strong completeness
and eventual strong accuracy properties of 3P . The in-
tuitive basis for the correctness is as follows:

Strong Completeness. If p is correct and q crashes,
then eventually q does not send an ack in response to
p’s ping. When this happens, the bichronal timer tmr
eventually expires, the phase variable is incremented,
and tmr is restarted. But eventually the phase variable
is incremented to 4, and when the bichronal timer ex-
pires while phase equals 4, p starts suspecting q. Since
p never receives an ack from q in the future, p continues
to suspect q permanently thereafter. Since p and q can
be any pair of correct and faulty processes, respectively,
it follows that every correct process eventually and per-
manently suspects every crashed process.

Eventual Strong Accuracy. On the other hand, if
both p and q are correct, then p may falsely suspect q as
having crashed. However, eventually p receives an ack
from q (because q is correct, and hence sends acks to p’s
pings). If p receives an ack while it suspects q, then p
increments its bichronal timer value (in line 4 of Action
1). Hence, after max(D ·∆, B ·Φ) such false positives,
the timer value increments to max(D · ∆, B · Φ) + 1.
Refer to this time as tcon (for convergence).



Note that tmr does not expire until the real-time
clock timer expires, which is at least D · ∆ real-time
clock ticks, which is at least ∆ global time units. Sim-
ilarly, tmr does not expire until the action clock timer
expires, which is at least B · Φ local actions.

Consider a ping sent from p to q after time tcon.
When the bichronal timer tmr starts for the first time,
phase = 1, and the ping-ack transaction is in the ping-
in-transit phase. The timer tmr runs for at least ∆
global time units. Therefore, when tmr expires while
phase = 1, the ping would have been delivered at q (be-
cause ∆ is the upper bound on message delay). In other
words, by the time tmr expires, the ping-ack transaction
is in the ack-generation phase or later. Therefore, when
tmr expires for the first time, the ping-ack transaction is
in the ack-generation phase or later

If tmr expires while phase = 1, p increments phase
to 2, and restarts tmr. Since tmr runs for at least B · Φ
local actions at p, process q executes at least B actions
before timer expiry, which is a sufficient number of ac-
tions for q to generate and send the ack (if it has not
done so already). In other words, by the time tmr ex-
pires for the second time, the ping-ack transaction is in
ack-in-transit phase or later.

If tmr expires while phase = 2, p increments phase
to 3, and restarts tmr. Again, tmr runs for at least ∆
global time units, which is sufficient time for the ack
to be delivered at p’s receive buffer (if it has not already
been delivered). In other words, by the time tmr expires
for the third time, the ping-ack transaction is in the ack-
processing phase or later.

If tmr expires while phase = 3, p increments phase
to 4, and restarts tmr. Again, tmr does not expire until
p executes B · Φ actions. However, p takes receipt of
the ack in its receive buffer within B local actions (if it
has not done so already). Therefore, p receives the ack
for the ping before tmr expires for the forth time (when
phase = 4). Hence, p does not suspect q for pings sent
after time tcon.

In other words, p may falsely suspect q only finitely
many times after which it never suspects q. This holds
true for all pairs of correct processes p and q. Thus, the
algorithm in Fig. 2 satisfies eventual strong accuracy.

The formal proof is given next.

7.1 Strong completeness

Theorem 7.1. The algorithm in Fig. 2 satisfies strong
completeness.

Proof. Recall that the strong completeness property

states that every crashed process is eventually and per-
manently suspected by all correct processes.

Consider a run of the algorithm in Fig. 2 where pro-
cess p is correct and process q is faulty. Let q crash at
time t. At time t, one of the following four cases holds:
(a) a ping is in transit from p to q, or (b) q has received
a ping from p, but has not executed Action 3, or (c) an
ack is in transit from q to p, or (d) p has received an ack
from q but has not executed Action 1 since.

Cases (a) and (b). Process p never receives an ack
from q in the future (because q is crashed). Conse-
quently, the bichronal timer tmr at p eventually expires,
phase is incremented, and tmr is restarted. Eventu-
ally, phase is set to 4. When phase equals 4 and the
bichronal clock expires, p starts suspecting q. Since no
ack from q arrives in the future, Action 1 is never enabled
and line 3 in Action 1 is never executed. Therefore, p
suspects q permanently thereafter.

Cases (c) and (d). Process p eventually receives (or
already has received) an ack from q. This enables Action
1, and a ping is sent from p to q. This reduces to Case
(a) (which has been analyzed in the previous paragraph).

Hence, if a process q crashes, then a correct process
p eventually and permanently suspects q. Since p and q
can be any pair of correct and faulty processes, respec-
tively, it follows that every crashed process is eventually
and permanently suspected by all correct processes.

7.2 Eventual strong accuracy

Recall that eventual strong accuracy states that for
each run, there exists a time after which no correct pro-
cess is suspected by any correct process. Consider two
correct processes p and q in a run α of the algorithm in
Fig. 2.

Lemma 7.2. If p sends a ping to q at global time
t1, where timerV alue ≥ dmax(B · Φ, D · ∆) + 1e,
and the bichronal timer tmr expires when phase = 1
at global time t2 in the current ping-ack transaction,
then at time t2 the ping-ack transaction is in the ack-
generation phase or later.

Proof. If p sends a ping to q at global time t1, then
phase = 1 at t1 (from Action 1 in Fig. 2). Let
timerV alue ≥ dmax(B · Φ, D · ∆) + 1e at t1. From
Action 1 in Fig. 2 we know that the bichronal timer tmr
starts with value (timerV alue, timerV alue) when p
sends a ping to q. If tmr expires when phase = 1 at
time t2, then from Lemma 6.1 we know that tmr ran
for at least ∆ global time units. Recall that the upper
bound on message delay is ∆ global time units. There-



fore, by time t2 the ping sent by p at time t1 has al-
ready been delivered to q’s receive buffer (and may or
may not have been processed by q). Note that the ack-
generation phase starts when the ping is delivered to q’s
receive buffer. Therefore, at time t2 the ping-ack trans-
action is in the ack-generation phase or later.

Lemma 7.3. If p sends a ping to q at global time t1,
where timerV alue ≥ dmax(B ·Φ, D ·∆)+1e, and the
bichronal timer tmr expires when phase = 2 at global
time t3 in the current ping-ack transaction, then at time
t3 the ping-ack transaction is in the ack-in-transit phase
or later.

Proof. If p sends a ping to q at global time t1, then
phase = 1 at t1 (from Action 1 in Fig. 2). Let the
bichronal timer tmr expire when phase = 1 at time
t2. From Lemma 7.2, we know that at time t2 the ping-
ack transaction is in the ack-generation phase or later.
From Action 2 in Fig. 2, we know that after time t2 the
variable phase = 2, and tmr is restarted with value
(timerV alue, timerV alue). Since timerV alue >
B · Φ, if tmr expires when phase = 2 at time t3, then
from Lemma 6.2 we know that tmr ran for at least B ·Φ
local actions at p after t2. In other words, p executed
at least B · Φ actions after the ping-ack transaction was
in ack-generation phase. Since the upper bound on rela-
tive process speeds is Φ, during the time that p executes
B · Φ actions, q executes at least B actions. In other
words, when tmr expired at time t3, process q had ex-
ecuted at least B actions after the ping was delivered to
q’s receive buffer. Therefore by time t3, process q had
already processed the ping (because a message in the
receive buffer is processed within B local actions) and
sent the ack. Note that the ack-in-transit phase starts
when the ack is sent from q to p. Therefore, at time t3,
the ping-ack transaction is in the ack-in-transit phase or
later.

Lemma 7.4. If p sends a ping to q at global time
t1, where timerV alue ≥ dmax(B · Φ, D · ∆) + 1e,
and the bichronal timer tmr expires when phase = 3
at global time t4 in the current ping-ack transaction,
then at time t4 the ping-ack transaction is in the ack-
processing phase or later.

Proof. If p sends a ping to q at global time t1, then
phase = 1 at t1 (from Action 1 in Fig. 2). Let the
bichronal timer tmr expire when phase = 2 at time
t3. From Lemma 7.3, we know that at time t3 the
ping-ack transaction is in the ack-in-transit phase or
later. In other words, q sent an ack to p in the cur-
rent ping-ack transaction at time t3 or earlier. From

Action 2 in Fig. 2, we know that after time t3 the
variable phase = 3, and tmr is restarted with value
(timerV alue, timerV alue). Since timerV alue >
D · ∆, if tmr expires when phase = 3 at time t4,
then from Lemma 6.1 we know that tmr ran for at least
∆ global time units. Recall that the upper bound on
message delay is ∆ global time units. Therefore, by
time t4 the ack sent by q (at time t3 or earlier) has al-
ready been delivered to p’s receive buffer (and may or
may not have been processed by p). Note that the ack-
processing phase starts when the ack is delivered to p’s
receive buffer. Therefore, at time t4 the ping-ack trans-
action is in the ack-processing phase or later.

Lemma 7.5. If p sends a ping to q at global time t1,
where timerV alue ≥ dmax(B · Φ, D · ∆) + 1e, and
phase = 4 and bichronal timer tmr is unexpired at time
t5 in the current ping-ack transaction, then p receives
the ack from q before tmr expires.

Proof. If p sends a ping to q at global time t1, then
phase = 1 at t1 (from Action 1 in Fig. 2). Let the
bichronal timer tmr expire when phase = 3 at time
t4. From Lemma 7.4, we know that at t4 the ping-
ack transaction is in the ack-processing phase or later.
In other words, the ack from q was delivered to p’s
buffer at time t4 or earlier. From Action 2 in Fig. 2, we
know that after t4 the variable phase = 4, and tmr is
restarted with value (timerV alue, timerV alue). Since
timerV alue > B ·Φ, we know from Lemma 6.2 that if
tmr expires, then it will expire after at least B ·Φ actions
at p. However, p processes messages in its receive buffer
within B actions after they are delivered. Therefore, p
takes receipt of the ack from q before tmr expires.

Theorem 7.6. The algorithm in Fig. 2 satisfies eventual
strong accuracy

Proof. Consider a run α of the algorithm in Fig. 2. Let p
and q be two correct processes in this run, and let p send
a ping to process q at time t. If p’s timer tmr expires
4 times successively after time t but before receiving an
ack from q, then p suspects q. However, since q is cor-
rect, q will eventually send an ack for each ping, and
that ack will eventually be received by p. Therefore, ev-
ery time p suspects q, p eventually receives an ack from
q and stops suspecting q (Action 1 in Fig. 2).

Consider the following metric m(timerV alue) =
dmax(B · Φ, D · ∆)e + 1 − timerV alue. Every time
p receives an ack from q while q is suspected, p in-
crements its timerV alue (line 4, Action 1 in Fig. 2).
Thus, every such false suspicion decrements the metric
m(timerV alue). If m(timerV alue) never becomes 0



in α, then it implies that p suspects q only finitely many
times.

On the other hand, if m(timerV alue) becomes 0 in
α, it implies timerV alue = dmax(B ·Φ, D ·∆)e+ 1.
This happens after dmax(B · Φ, D · ∆)e false suspi-
cions. Let m(timerV alue) = 0 at time tper (after
which 3P provides perfect information as demonstrated
next). Consider any time tsuff > tper (in the suffix) at
which p sends a ping to q.

Upon sending a ping to q, p starts tmr with timer
value tmr ≥ dmax(B ·Φ, D ·∆)e+ 1 and phase = 1.
Every time tmr expires before p receives an ack from q,
it increments phase and restarts tmr until phase = 4.

If p receives an ack from q before phase = 4, then
p does not suspect q. From Lemma 7.5, we know that if
phase = 4, timerV alue ≥ dmax(B · Φ, D ·∆)e + 1,
and tmr is unexpired, then p receives the ack from q
before tmr expires. This enables Action 1 and p does
not suspect q. Therefore, if m(timerV alue) = 0 in α,
then p does not suspect q in an infinite suffix of α.

Thus, for any two correct processes p and q, p sus-
pects q only finitely many times. In other words, there
exists an unknown time after which no correct process
is suspected by any correct process.

Theorem 7.7. The algorithm in Fig. 2 implements 3P .

Proof. From Theorems 7.1 and 7.6, we know that the al-
gorithm in Fig. 2 satisfies strong completeness and even-
tual strong accuracy, thus implementing 3P .

8 Conclusion

Portability. The novelty in this paper is the intro-
duction of bichronal clocks. In the implementation in
Fig. 2, bichronal timers are used like action clock and
real-time clock timers. Thus, existing implementations
of 3P can be modified to use bichronal clocks instead
of either action or real-time clocks, and automatically
be made immune to the celeration problem. This is in-
dicative of the portability and universal applicability of
bichronal clocks inM∗ and, possibly, other customized
models of partial synchrony.

Heartbeat-based implementations. Although we
have demonstrated the use of bichronal timers only in
a ping-ack based 3P implementation, bichronal timers
may be used in heartbeat-based 3P implementations
too (e.g. [2, 23, 5, 4]). In heartbeat-based implemen-
tations, the local failure detector module at each process
p sends periodic “heartbeats” to all the processes that

monitor p. The monitoring processes then adaptively
estimate the inter-arrival time of these heartbeats7.

In heartbeat-based implementations, each process p
will need at least one bichronal timer (or possibly more,
depending on the details of the implementation) to de-
termine the time to send the next set of heartbeats to the
processes monitoring p. This bichronal timer is run ex-
actly once per heartbeat generation. Process p will also
need at least one bichronal timer to estimate the maxi-
mum inter-arrival time of heartbeats from the processes
being monitored by p. The second bichronal timer
would be run at most twice (successively) per heartbeat
inter-arrival because the inter-arrival delay consists of
two distinct delays: (1) message delay in transit, and (2)
processing delay at the recipient’s receive buffer.

Performance. In practice, it is often assumed that
physical limitations (such as the speed of light, or the
size of an atom) impose an upper bound on absolute pro-
cess speed. Therefore, it can be argued that assuming
an upper bound on process speeds and using real-time
clocks alone is sufficiently realistic. While this may be
true, bichronal clocks, in addition to correctness, boost
performance of 3P as well.

In traditional action-clock based implementations of
3P , every time hardware is upgraded, processes accel-
erate. Hence, the 3P module could start falsely tim-
ing out on correct processes resulting in longer time
to convergence and increased system volatility. Using
bichronal-clock based implementations eliminates this
behavior because although the action clock component
of the bichronal clock may falsely timeout on hardware
upgrades, the real-time clock does not.

Similarly, in traditional real-time clock based imple-
mentations of 3P , during periods of increased stress
like server overloads, denial-of-service attacks, and
such, processes in the system decelerate globally. The
3P module could start falsely timing out on correct pro-
cesses due to poor response times from processes. Using
bichronal-clock based implementations eliminates this
behavior because although the real-time clock compo-
nent of the bichronal clock may falsely timeout, the ac-

7Heartbeat-based implementations are often employed in systems
where messages are lost infinitely often. Message loss becomes prob-
lematic in ping-ack based implementations because these implemen-
tations will have to take into account the possibility of pings and/or
acks being dropped by the system. Heartbeat-based implementations
are inherently immune to message loss. Such immunity, however,
comes at a price. Ping-ack schemes are inherently flow-controlled.
A ping-ack protocol typically adapts to varying process speeds better
than heartbeat-based protocols. Faster processes are forced to wait for
an ack after sending the ping, thus ensuring message flow-control in
the system. In contrast, it is common in heartbeat-based protocols for
faster processes to flood the slower processes with heartbeats.



tion clock does not.
Thus, in addition to providing immunity from pro-

cess celeration, bichronal clocks also enable systems to
minimize the volatility precipitated by system upgrades
and periods of high stress.
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