Crash-Quiescent Failure Detection*

Srikanth Sastry, Scott M. Pike, and Jennifer L. Welch

Department of Computer Science and Engineering
Texas A&M University
College Station, TX 77843-3112, USA

{sastry,pike,welch}@cse.tamu.edu

Abstract. A distributed algorithm is crash quiescent if it eventually
stops sending messages to crashed processes. An algorithm can be made
crash quiescent by providing it with either a crash notification service or
a reliable communication service. Both services can be implemented in
practical environments with failure detectors. Therefore, crash-quiescent
failure detection is fundamental to system-wide crash quiescence. We
establish necessary and sufficient conditions for crash-quiescent failure
detection in partially synchronous environments where a bounded, but
unknown, number of consecutive messages can be arbitrarily late or lost.
Without a correct majority of processes, not even the weakest oracle
for fault-tolerant consensus, ¢W, can be implemented crash quiescently.
With a correct majority, however, the eventually perfect failure detector,
OP, is possible. Our &P algorithm is correct in all runs, but improves
performance via crash quiescence in any run with a correct majority. We
also present a refinement of our &P algorithm to mitigate the overhead
of achieving crash quiescence; the resulting bit complexity per utilized
link is asymptotically better than or equal to that of non-crash-quiescent
counterparts.

1 Introduction

A distributed algorithm is called crash quiescent, if, in all runs, correct processes
eventually stop sending messages to crashed processes. Depending on the system
model, crash quiescence may be straightforward, non-trivial, or even impossible.
For example, crash quiescence is straightforward with reliable communication,
even for purely asynchronous systems: every message received generates an ack,
and each process can have at most k£ unacknowledged messages per process at
any time. Crashed processes — which permanently halt without warning — stop
sending acks, so after the final such ack is delivered, each correct process will
become crash quiescent once k subsequent messages go unacknowledged.

By contrast, crash quiescence with unreliable communication is far more
challenging due to inherent limitations on process coordination in the presence
of both crash faults and message loss. For example, consider any application

* This work was supported in part by Texas Higher Education Coordinating Board
grants ARP-00512-0007-2006 and ARP-00512-0130-2007, and by NSF grant 0500265.

where some correct process i requires acknowledged delivery of a message m to
each correct process. With lossy communication, ¢ must re-send m sufficiently
many times until the corresponding acks are received from each correct process;
otherwise, the application program will be incorrect. For each crashed process,
however, ¢ must eventually stop re-sending m; otherwise, crash quiescence will be
violated. In such systems, correct processes are committed to distinctly different
(and contradictory) communication behaviors, depending on whether messages
are sent to correct or faulty processes.

Since each message can be dropped (due to message loss), or never sent (due
to process crashes), or just late (due to asynchrony), crash-quiescent algorithms
must navigate an intersection of uncertainties. Fortunately, in systems with both
crashes and native message loss, application-layer algorithms can be made crash
quiescent relative to underlying system services for crash detection. As such,
crash-quiescent failure detection is fundamental to system-wide crash quiescence.

A failure detector [1] can be viewed as a distributed oracle that can be queried
for (potentially unreliable) information about process crash faults. Despite such
unreliability, failure detectors can solve many problems that are not solvable
in pure asynchrony [2]: most notably, crash-tolerant consensus [1]. As system
services, failure detection oracles decouple distributed algorithms from explicit
commitments to lower-level timing parameters; more theoretically, such oracles
function as proxies for various degrees of partial or even full synchrony.

One oracle — the eventually perfect failure detector &P — is particularly use-
ful for enabling crash-quiescent applications. Informally, OP suspects all crashed
processes and eventually trusts all correct processes permanently. As such, OGP
can suspect correct processes only finitely many times. In an asynchronous sys-
tem augmented with &P, applications can become crash quiescent (despite mes-
sage loss) as follows: so long as the recipient remains trusted by &P, re-send each
(new or buffered) message sufficiently many times until an acknowledgment is
received; otherwise, buffer outbound messages while the recipient is suspected.

The foregoing protocol essentially provides quiescent reliable communication
among correct processes, which is the approach taken by [3] as well. The same
paper proves that — among oracles that output a list of suspected processes —
OP is actually the weakest failure detector for quiescent reliable communication.
Nonetheless, a fundamental problem remains: for system-wide crash quiescence,
it is essential that any underlying oracles are crash quiescent as well.

Contribution. We prove necessary and sufficient conditions for crash-quiescent
failure detection in partially synchronous environments where a bounded, but
unknown, number of consecutive messages can be arbitrarily late or lost. Without
a correct majority of processes, not even the weakest oracle for fault-tolerant
consensus, OW, can be implemented crash quiescently. With a correct majority,
however, &P, is possible. Our &P algorithm is correct in all runs, but improves
performance via crash quiescence in any run with a correct majority. We also
present a refinement of our OGP algorithm to mitigate the overhead of achieving
crash quiescence; the resulting bit complexity per utilized link is asymptotically
better than or equal to that of non-crash-quiescent counterparts.

2 Definitions

System Model. We consider partially-synchronous systems subject to bounded
intervals of message loss and delay. We start with the canonical model M;
from [1,4], and we weaken channel reliability and synchrony guarantees to allow
an infinite number of messages to be lost or arbitrarily delayed. Specifically, we
assume that communication takes place on ADD channels [5]. We informally
describe the system model, which we denote Ecypg (for Communication-Lossy
Partially-Synchronous Environment — pronounced “eclipse”), next.

The system consists of a finite fixed set II of n processes. We assume that the
set I is known to all processes. Each process’s local program is represented as
an action system consisting of a finite set of guarded commands. At each step of
a process, the process can receive at most one message from one of its incoming
message buffers, update its local state, and send at most one message to each
process. Each process’ action system includes a special crash action. The crash
action can be executed at most once and permanently disables the guards of all
the program actions, thereby halting the process.

Processes communicate with each other by sending messages over a fully
connected communication topology. A send statement by process ¢ causes the
indicated message to be added to the channel from i to the recipient process
j. When a message m is in the channel from 7 to j, a deliver action is enabled
whose effect is to remove m from the channel and place it in the incoming
message buffer at j for sender i.!

Starting from a system state in which channels are empty and local program
variables have specified initial values, a run of an algorithm consists of a poten-
tially infinite sequence of enabled actions (or steps). Each action in the run is
either a local program action of a process, a crash action, or a deliver action of
a channel. If the run is finite, then no program action should be enabled at the
end of the run. A process that has not (yet) crashed is called live. Processes that
never crash are called correct, and processes that crash are called faulty.

In a given run, each step is associated with a non-negative integer, which
is the real time when it occurs; times assigned to steps in a run must be non-
decreasing, but no two steps by the same process may have the same time. This
common way of modeling runs enforces an upper bound on absolute process
speed?, but processes can decelerate indefinitely subject to the following restric-
tion on relative process speeds: there exists ® € N such that if (1) processes i
and j are both live during a time interval, and (2) 7 takes at least ® steps in
the interval, then j takes at least one step in the interval. The bound ® is not
necessarily known to the processes and can vary for different runs of the system.

We assume that the actions of each process are locally scheduled by a First-
Come-First-Serve (FCFS) scheduler which executes program actions in the order

1 Our impossibility result holds even if incoming message buffers are infinite, while
our algorithm works with a one-slot buffer whose contents are overwritten by the
execution of each deliver event.

2 This assumption is necessary to implement eventually reliable timeouts using only
action-time clocks [6].

in which they were enabled. Note that such scheduling fairness applies only to
program actions and not to crash actions, which are a modeling device. Thus,
the crash action is always enabled at a correct process but never executed, while
it is continuously enabled at a faulty process until the action is executed.

Each channel guarantees that some subset of the messages sent on it will be
delivered in a timely manner and such messages are not too sparsely distributed
in time, i.e., it is an ADD channel [5]. In more detail, consider the channel from
process ¢ to process j. The (real-time) delay of a message is the time elapsed
between the step in which the message is sent and the deliver event for the
message; if there is no deliver event, then the delay is infinite. For each run,
there exist constants A € N and B € N and a subset .S;, of the set of messages
sent over the channel (the privileged messages) satisfying the following: (1) The
delay of each message in S, is at most A. (2) For all intervals of time in which ¢
sends at least B messages to j, at least one of the messages sent over the channel
in that interval is in S,. The bounds A and B and the set S, are not necessarily
known to the processes and can be different in different runs of the system.3

As consequences of our model definition, the following properties hold:

Property 1. The maximum number of steps taken by a process during the time
that a privileged message is in transit in a channel is A.

Property 2. For every pair of processes ¢ and j, the maximum number of steps
taken by 4 during a time period in which j takes s steps is (® - s).

Eventually Perfect Failure Detector. The eventually perfect failure detector
OP satisfies the following two properties in each run [1]:

— Strong Completeness: Every crashed process is eventually and perma-
nently suspected by every correct process.

— Eventual Strong Accuracy: There exists a time after which no correct
process is suspected by any correct process.

OP is a particularly attractive oracle. First, it is sufficiently powerful to
solve many fundamental problems including fault-tolerant consensus [1], stable
leader election [7], and wait-free dining [8]. Additionally, it is realistically imple-
mentable: in contrast to other relatively powerful oracles — such as Perfect [1],
Strong [1], and Trusting [9] — OP is actually implementable in classic models
of partial synchrony®.

Crash Quiescence. Algorithm A is said to be crash quiescent if, for every run
of A, there exists a time after which no correct process sends messages to any
crashed process.

3 If the bound B is known, then implementing &P in Ecrps with an arbitrary number
of crash faults is straightforward. Simply take a standard ping-ack implementation
of OP for reliable channels, and instead of sending a single ping or a single ack, send
B pings or B acks, respectively.

* This claim is based on: (a) the many implementations of P in recent works (cf.
[1,7,10-15]), and (b) the results from [16], where Larrea, et al., prove that failure
detectors with perpetual accuracy (including P, and S) cannot be implemented in
classic models of partial synchrony [1,4].

3 Impossibility of Crash-Quiescent OP in Ecrps

In this section we show that it is impossible to implement P crash quiescently
in Ecpps without a correct majority of processes. We start by showing that
it is impossible to implement the eventually weak failure detector (OW) [1], a
weaker failure detector than OP, in Ecpps crash-quiescently if at most [%]
processes may crash. The oracle OW satisfies weak completeness, which states
that every crashed process is eventually and permanently suspected by some
correct process, and eventual weak accuracy, which states that some correct
process is eventually and permanently trusted by all correct processes. Since
every implementation of OP is also an implementation of GW), the impossibility
result for GW holds for OGP as well.

Theorem 3. It is impossible to implement a deterministic crash-quiescent OW

in Ecpps if up to [§] processes may crash.

Proof. For the purpose of contradiction, assume there is an algorithm A that
implements crash-quiescent CW in Ecppg. Partition the set of processes into
two sets X and Y such that |X| = |§] and |[Y] = [5].

Consider a run ax in which all processes in X are correct and execute in syn-
chronous rounds, all processes in Y crash initially, and all messages are received
(by correct processes) in the next round after they are sent. By the assumed
correctness of A, there exists a round rx after which each process in Y is per-
manently suspected by some process in X, and all processes in X stop sending
messages to processes in Y. Let myx denote the maximum number of messages
sent by any process x € X to any process y € Y during execution ax.

Let ay be a run that is the same as ax except that the roles of X and Y
are reversed; define ry and my analogously to rx and mx.

Let Lpgrt be the set of communication links that go between processes in X
and processes in Y.

Now consider a run « in which all processes are correct and execute in
synchronous rounds. All messages sent over links in Ly, through round r =
max(rx,ry) are lost, and all other messages (those sent over the other links and
those sent over L,q,+ after round r, if any) are delivered with delay of one round.
It can be shown using standard arguments that ax and « are indistinguishable
to all processes in X through round r, and thus each process in X is quiescent
with respect to all processes in Y at the end of round r of a. Similarly, ay and
« are indistinguishable to all processes in Y through round r, and thus each
process in Y is quiescent with respect to all processes in X at the end of round
r of .. The processes in X remain quiescent with respect to the processes in Y
and each process in Y is permanently suspected by at least one process in X.
Similarly, the processes in Y remain quiescent with respect to the processes in
X and each process in X is permanently suspected by at least one process in Y.

The link behavior in « conforms to the ADD channel specification with B =
max(mx,my). Since A is supposed to work correctly in o but every correct
process is permanently suspected by at least one other correct process (violating
the specification of GW), we have a contradiction. a

OP implementation for each process i € 11

constant n Total number of processes in 11
constant intermission; € NT Min. interval between sending heartbeat pulses
integer next-pulse, =0 Countdown timer to send next heartbeat pulse
integer estimate;; =1 Predicted interval between heartbeats from j
integer deadline;; =1 Countdown timer to receive next heartbeat from j

IT x 1T boolean matrix S; Suspect matriz: S;(j, k) =true implies j suspected k

OP; €MV € I1: Si(i,j) = true: j} OP output when queried by i
Qi LV, k € I : Si (4, k) A count(—S;(2,5) A Si(4, k) > [2] : k} U {i} Quiescence Set

1: {next-pulse; =0} — Action 1: Send Pulse
2: foreach (j ¢ Q;) send (OP;) to j Send suspected ids in pulse
3: foreach (k € II) do S;(i, k) := (deadline;x = 0) Update local suspect list
4: next-pulse; := intermission; — 1 Schedule next heartbeat pulse
5: {receive (hb) from j} — Action 2: Receive Heartbeats
6: if (S;(i,7) = true) Detect a false-positive mistake
7 Si(i,7) := false Remove j from local suspect list
8: estimate;; := estimate;; + 1 Increase predicted interval for j
9: foreach (k € II) do S;(j,k) := (k € hd) Update suspect matriz row for j
10 : deadline;; := estimate;; Set next heartbeat deadline for j
11 : {true} — Action 3: Decrement Timers
12: next-pulse; := maz(0, next-pulse; — 1)

13: foreach (j € II) where (j # i) do deadline;; := maxz(0, deadline;; — 1)

Alg 1.1. Implementation of OGP that is correct in all runs and crash quiescent
in any run with a correct majority of processes. Initial values for the suspect
matrix can be arbitrary. Note that deadline;; is initially positive and is never
decremented, so each process i will eventually trust itself permanently.

Corollary 4. It is impossible to implement a crash-quiescent OP in Ecpps if

up to [5] processes may crash.

4 Crash-Quiescent OP in Ecpps with Majority Correct

In contrast to the previous result, we now show that it is possible to implement
crash-quiescent OP in Ecppg if a majority of the processes are correct; fur-
thermore, the implementation is correct, although not crash-quiescent, without
a correct majority of processes.

Alg. 1.1 presents one such &P implementation in Foppg. It is a heartbeat-
based implementation that gains extra information by exchanging suspect lists
with other processes. This extra information is used to achieve crash quiescence.
Specifically, each process i relays its entire suspect list by including it in heart-
beat messages sent to other processes at regular intervals (Action 1, line 2). The

intervals are measured by a step timer next-pulse, which is decremented in Ac-
tion 3 to send the heartbeat messages. Every time next-pulse; expires (counts
down to zero), the process sends heartbeats with its current suspect list to a
subset of processes (Action 1, line 2), determined by a method explained later.

Process i expects to receive heartbeats from each live neighbor at regular
intervals. The upper bound on the inter-arrival time of the heartbeats may be
unknown. Hence, ¢ has an adaptive step timer deadline;; with respect to each
process j that is initialized to the value of estimate;; and is decremented in
Action 3. If the timer deadline;; expires (counts down to zero) before ¢ receives
a heartbeat from j (Action 1, line 3), then ¢ suspects j. Every time i receives a
heartbeat from a process j, 7 trusts j (Action 2) and restarts the timer deadline;;
(Action 2, line 10). However, if j was previously suspected by 7, then i also
increases the timer value estimate;; (Action 2, line 8).

Recall that processes send their suspect lists in each heartbeat. When a
process i receives a heartbeat from process j, it records the list of processes
suspected by j, as communicated in that heartbeat (Action 2, line 9), in the
j*" row of the suspect matrix S;. Every time next-pulse; expires, process i
determines the set of processes that it will not send a heartbeat to as follows: If a
process j is currently suspected by i, and among the processes that ¢ trusts, more
than | % | suspect j (as communicated through the latest heartbeats received by
i), then ¢ adds j to the quiescence set Q; (as per the definition of Q; in Alg. 1.1),
and ¢ does not send a heartbeat to j. Also, note that 7 is always in @);. The set
Q; is dynamically defined every time next-pulse; expires, so it is possible for i to
send a heartbeat to j in some instances of Action 1 in a run and not in others.

4.1 Proof of Correctness

Theorem 5. Alg. 1.1 satisfies strong completeness: every crashed process is
eventually and permanently suspected by all correct processes.

Proof. Upon crashing, each faulty process j stops sending heartbeats. Thus, each
correct process i stops receiving heartbeats from j. Since Action 3 at i is always
enabled and executed infinitely often, eventually estimate;; is permanently 0.
After such time, all executions of Action 1 at 4 suspect j, and j is never trusted
again because no heartbeats from j are received. O

We prove eventual strong accuracy (eventually no correct process is suspected
by any correct process) through the following lemmas:

Lemma 6. The values taken on by variable estimate;; are non-decreasing, and
every time a process j is taken off a process i’s suspect list, the value of estimate;;
1s increased.

Proof. Inspection of Alg. 1.1 reveals that estimate;; is never decremented. Fur-
thermore, the only action at ¢ that takes a process j off the suspect list is Action
2 (in line 6-9). However, the same action also increments the value of estimate;;
by 1 (in line 9) after j is taken off the suspect list. O

Since the action system at each process contains n + 1 actions and the local
scheduler is FCFS, we get:

Lemma 7. For each correct process i, the maximum number of steps executed by
1 between the time that an action a is enabled at i and the earliest time thereafter
that the action a is executed is n.

Let INT denote the largest intermission; over all processes i € 1I.

Lemma 8. Within every interval in which process i takes n- INT steps, i exe-
cutes Action 1 at least once.

Proof. Inspection of Alg. 1.1 shows that next-pulse; is always non-negative, it is
set to a value not exceeding INT — 1 in Action 1, and it is decremented by 1 in
Action 3. If Action 3 is executed INT — 1 times, then next-pulse; is guaranteed
to be decremented to 0, enabling Action 1. Since Action 3 is always enabled, by
Lemma 7, we know that within n - (INT — 1) steps by 4, Action 1 is enabled at
i. Applying Lemma 7 again, we know that Action 1 will be executed within the
next n steps at i. O

Lemma 9. If processes i and j are correct and i sends a heartbeat to j infinitely
often, then j sends a heartbeat to i infinitely often.

Proof. If process i sends heartbeats to process j infinitely often, then j receives
heartbeats from ¢ infinitely often. From Action 2, we know that j trusts ¢ upon
receiving a heartbeat from i. Process j continues to trust ¢ until the next execu-
tion of Action 1, guaranteed to occur by Lemma 8. This execution of Action 1
will send a heartbeat to . ad

Lemma 10. If processesi and j are correct and i sends a heartbeat to j infinitely
often, then i and j eventually trust each other permanently.

Proof. If i sends heartbeats to j infinitely often, then by Lemma 9 j sends
heartbeats to 4 infinitely often as well. Consequently, ¢ and j trust each other
infinitely often. By Lemma 6 we know that every time 4 (falsely) suspects j, the
value of estimate;; increases in the future when 4 trusts j again. Similarly, every
time j (falsely) suspects 4, the value of estimate;; increases in the future when
J trusts ¢ again.

We now show that after ¢ and j suspect each other finitely many times,
either ¢ and j trust each other permanently (thus vacuously satisfying eventual
strong accuracy), or the values of estimate;; and estimate;; grow sufficiently
large such that: in an infinite suffix, ¢ and j always receive heartbeats from each
other before timers deadline;; and deadline;; (which are reset to estimate;; and
estimate;, respectively) expire. Therefore, ¢ and j eventually and permanently
trust each other.

Let M B -n-INT+A+®(n+ B-n-INT)+ A+ n. Consider a time
tsus at which: (a) either ¢ permanently trusts j or estimate;; exceeds M, and
(b) either j permanently trusts ¢ or estimate;; exceeds M.

Consider any time t; (subscript f for final) after ¢s,; at which ¢ receives a
heartbeat from j by executing Action 2. Thus, 4 trusts j at time ¢y and deadline;;
is reset to estimate;;. By Lemma 8 we know that in the next B -n - INT steps
at 7, process ¢ executes Action 1 at least B times. Since estimate;; exceeds M,
which is greater than B-n-INT, i continues to trust j for B executions of Action
1, and therefore, B heartbeats are sent to j. Note that at least one heartbeat
among the B is privileged. Let m be one such heartbeat.

From the system model definitions, the message delay for m; is at most A
time ticks. By Property 1, the maximum number of steps taken by i while m;
is in transit is A. Delivery of m; at j enables Action 2 at j (if it had not been
enabled already).

By Lemma 7, the maximum number of steps by j between the delivery of m,
and the receipt of a heartbeat from ¢ is n. The same argument as above shows
that after j receives a heartbeat from i, j trusts ¢« and within B -n - INT steps
(at j) process j sends a privileged message, ma, to i. Thus, by Property 2 the
maximum number of steps taken by i during the time that j is waiting to take
delivery of a heartbeat from 4 and to send the B heartbeats (including ms) to i
is ®(n+ B-n-INT).

A symmetric argument shows that the maximum number of steps taken by
1 while my is in transit to ¢ and some heartbeat from j is received by i is A + n.

In aggregate, we see that within (B-n- INT4+A+®(n+B-n-INT)+A+n) =
M steps of i after time t¢, 7 gets another heartbeat from j. Since estimate;; > M,
7 has been continuing to trust j throughout this interval. Applying the same
argument iteratively, it follows that ¢ never suspects j after time ;.

Reversing the roles of ¢ and j shows that j never suspects ¢ after time t;. 0O

Lemma 11. If processes i and j are correct and i sends only finitely many
heartbeats to j, then j sends only finitely many heartbeats to i, and i and j
suspect each other eventually and permanently.

Proof. Let i and j be two correct processes such that ¢ sends only finitely many
heartbeats to j. By the contra-positive of Lemma 9, j sends only finitely many
heartbeats to ¢ as well.

Let t; be the latest time at which a heartbeat from i to j, or from j to 4,
is received. After t,, process i never executes Action 2 with respect to j, and j
never executes Action 2 with respect to i. Consequently, timers deadline;; and
deadlinej; are never increased, but since Action 3 at both ¢ and j is continuously
enabled, the timers are decremented infinitely often. Eventually, these timers
reach 0 and when ¢ and j execute their respective Action 1 after such time, ¢
suspects j, and vice versa. Since no more heartbeats are received by ¢ or j from
each other, processes 7 and j suspect each other permanently. a

Lemma 12. If process i is correct, then its suspect list stops changing.

Proof. From Theorem 5 we know that eventually all crashed processes are per-
manently suspected. From Lemmas 10 and 11 we know that i either eventually
and permanently trusts a correct process j, or ¢ eventually and permanently sus-
pects a correct process j. That is, ¢’s suspect list eventually stops changing. O

Theorem 13. Alg. 1.1 satisfies eventual strong accuracy whereby every correct
process is eventually and permanently trusted by all correct processes.

Proof. From Lemma 12 we know that the suspect list at each correct process
stops changing eventually. Consider a run « of Alg. 1.1. Let tgsqpe be the time
after which the suspect list at each correct process stops changing and all faulty
processes have crashed.

Let ¢ and j be two correct processes in run a. If ¢ sends infinitely many
heartbeats to j, then from Lemma 10 we know that i eventually and perma-
nently trusts j. However, if i sends only finitely many heartbeats to j, then from
Lemma 11 we know ¢ and j eventually and permanently suspect each other. We
will now show that the latter is impossible.

For the purposes of contradiction, let us assume that ¢ sends only finitely
many heartbeats to j. By Lemma 11, ¢ and j eventually and permanently suspect
each other and stop sending heartbeats to each other. By Lemma 12, the suspect
lists of all correct processes eventually stop changing. Hence, eventually, ¢ and
J receive unchanging heartbeats (if at all) from other correct processes in the
system. In other words, eventually, the suspect matrices S; and S; stay constant.

Since ¢ eventually stops sending heartbeats to j, it implies that j € Q; even-
tually and permanently. That is, ¢ trusts a majority of processes, and therefore,
a majority of processes trust i (follows from Lemma 10 and the fact that i sends
heartbeats in Action 1 to such trusted processes infinitely often). Also, a ma-
jority of processes suspect j. This suspicion information is relayed to ¢ in the
contents of the heartbeats from the trusted processes.

Reversing the roles of ¢ and j in the arguments above, we know that a ma-
jority of processes suspect i for j to stop sending heartbeats to .

The above arguments establish that a correct majority of processes trust ¢
permanently for ¢ to stop sending heartbeats to j, but a correct majority of
processes also suspect ¢ permanently for j to stop sending heartbeats to i. This
is a contradiction! Hence, it follows that 7 and j send heartbeats to each other
infinitely often. Lemma 10 implies that ¢ eventually and permanently trusts j.

Thus, every correct process is eventually and permanently trusted by all
correct processes. O

Theorem 14. Alg. 1.1 is crash quiescent if a majority of processes are correct.

Proof. From Theorem 5, we know that every crashed process is suspected by
every correct process. From Theorem 13, we know that every correct process
eventually and permanently trusts every correct process. Hence, every correct
process receives suspect lists from all correct processes infinitely often. Since
eventually every correct process permanently suspects every crashed process,
the following is eventually and permanently true: for all pairs of processes (i, k)
where i and k are correct, Sk(i,j) is true for all crashed processes j.

Therefore, in all runs where a majority of processes are correct, eventually
for every correct process i, every crashed process j is permanently in the set
Q;. In other words, every correct process i eventually and permanently stops
sending heartbeats to any crashed process. ad

Communication Complexity. Next, we analyze the communication complex-
ity of our algorithm, both in terms of the number of messages and the number of
bits sent. Since processes send messages periodically, and correct processes never
cease doing so, we focus on the number of messages (and bits) sent in each period
(the same approach is used in, for instance, [12]). In every run of a non-crash-
quiescent implementation of &P using heartbeats, eventually all faulty processes
have crashed and every correct process periodically sends heartbeats to all the
processes, resulting in O(c-n) messages per period, where ¢ is the number of cor-
rect processes. By contrast, in runs of Alg. 1.1 where ¢ > [%], eventually O(c?)
messages are sent per period. Thus, Alg. 1.1 offers improved message complex-
ity in majority-correct runs, and this improvement has no penalty in message
complexity for runs where half or more processes crash.

Ironically, the bit complexity of Alg. 1.1 is greater than that of its non-crash-
quiescent counterparts in all runs. Since the receipt of a “dummy” heartbeat
message devoid of any payload may be sufficient to establish the liveness of
the sender, each heartbeat message in a non-crash-quiescent algorithm requires
just O(logn) bits (for encoding the sender and recipient). But each message
in Alg. 1.1 requires ©(n) bits (to encode the suspect list and the sender and
recipient addresses). Thus the total periodic bit complexity of Alg. 1.1 1is ©(c?-n)
as compared to O(c - n - logn) for the non-crash-quiescent version. Thus for
instance, if ¢ is a constant fraction of n, as will be the case if processes have a
fixed probability of failure, the bit complexity of Alg. 1.1 is asymptotically worse
than that of the non-crash-quiescent version. Yet the purpose of crash-quiescence
is to reduce the overall communication complexity. We address this next.

5 Improving the Communication Bit Complexity

Algorithm. We improve the communication bit complexity of Alg. 1.1 by in-
serting a communication sub-layer between Alg. 1.1 and the communication
infrastructure. This communication sub-layer sends and receives two types of
heartbeats: heavyweight heartbeats and lightweight heartbeats. The heavyweight
heartbeats contain the entire suspect list sent by the process, whereas the light-
weight heartbeats merely contain ‘i-am-alive’ information.

Alg. 1.2 implements such a communication sub-layer. In the action system,
each process maintains, in the variable prev_hb;;, the suspect list that the OGP
module sent to process j in the previous heartbeat. If the contents of the current
heartbeat to be sent are different from the contents of the previous heartbeat
sent, then the action system generates a new sequence number (Action 1, line 3)
and constructs a heavyweight heartbeat (Action 1, line 5). However, it sends the
heavyweight heartbeat only if the recipient is not currently suspected (Action 1,
line 6)°; otherwise it sends a lightweight heartbeat (Action 1, line 7). Alg. 1.2
stores the sequence number of the latest heartbeat received from each process

® The condition for trusting a recipient to send a heavyweight heartbeat ensures that
in non-crash-quiescent runs, a correct process does not send an infinite number of
heavyweight heartbeats to a crashed process.

set prev_hb;; =0 The previous heartbeat sent by the local G P-module to process j

message msgi; = (0, null,0) The actual heartbeat (HB) sent to j
integer seq-num;; := 0 The current sequence number for heartbeats to j
integer max_seq;; := 0 The highest sequence number received from j
integer latest_ack;; :== 0 The latest ack sent to j
message hb;; := () The heartbeat (suspect list) sent to the local OP module
1: {upon exec(OP—send (hb) to j)} — Action 1: Send a heartbeat
2: if (hb # prev_hb;;) Check if the suspect list has changed
3: increment seq_-num;; by 1 A new sequence number for new suspect list
4: prev_hb;; := hb Update local record of the latest heartbeat
5: msgi:; = (seq-num;;, hb, latest_ack;) Construct HB (piggybacked ack)
6: if (j ¢ hd) send (msg;;) to j Send constructed HB if j is trusted
7 else send (0, null,0) to j Else send a lightweight HB
8 : {upon receive (seq, hb, ack) from j} — Action 2: Receive a heartbeat
9: if (ack = seq-numy;) Check if the ack is for latest local suspect list
10 : msg:; = (0,null, seq) Construct a lightweight HB (with piggybacked ack)
11: latest_ack;; 1= seq Record the ack to be sent in the next HB
12: if (seq > max_seq;;) Check if the suspect list from j is newer
13: hb;; := hb Update hb; with the new suspect list
14 : mazr_seq;; := seq Update the mazx sequence number received from j

15: exec(OP—receive (hb;;) from j) Send suspect list to the local GP-module

Alg 1.2. Bit-complexity optimizer for the OGP algorithm in Alg. 1.1

Jj in the variable latest_seq;; (Action 2, line 11) and piggybacks, in the next
heartbeat sent, the sequence number as the ack for the latest heartbeat received
(Action 1, line 5 and Action 2, line 10). The action system continues to send
heavyweight heartbeats until it receives an ack from the recipient process for
the new heavyweight heartbeat (Action 2, lines 9-10). After the ack for the new
heavyweight heartbeat is received, the action system starts sending lightweight
heartbeats until the suspect list changes again.

At the receiver, the communication sub-layer maintains the latest suspect
list received so far from each process j (in the variable hb;;). Upon receiving
a heavyweight heartbeat with a suspect list that is newer than the latest one
on record (Action 2, line 12), the communication sub-layer updates its local
information (Action 2, lines 13-14). It then sends the latest heartbeat on record
(stored in the variable hb;;) to the local &P module (Action 2, line 15).

Correctness. We show that the proof of correctness in Sect. 4.1 applies to
Alg. 1.1 + 1.2 as well. Inspection of the action system in Alg. 1.2 shows that
the communication sub-layer does not change the number of messages sent or
received in the system. It also ensures that the end-to-end communication delay
for privileged messages is bounded in the number of action clock ticks (because
messages are sent or received in a single atomic step).

Additionally, the heartbeat that is sent to the local OP-module is always a
valid suspect list. This fact follows from the observation that the value of hb;;
is initialized to a valid suspect list, and the only modification of hb;; is in lines
12-13. This change to hb;; could result in an invalid suspect list (viz., the value
null) only when a lightweight heartbeat is received. However, all lightweight
heartbeats are sent with sequence number 0, and hence, do not overwrite the
existing (valid) suspect list. Consequently, the heartbeat sent to the local &P-
module is always a valid suspect list.

Strong Completeness. The proof for Theorem 5 is agnostic to the contents of
the heartbeats and is therefore applicable to Alg. 1.1 + 1.2 as well. Thus, by
Theorem 5, Alg. 1.1 + 1.2 satisfies strong completeness.

Eventual Strong Accuracy. The proofs for Lemmas 6 through 12 are agnostic to
the heartbeat content. Hence, these lemmas are applicable to Alg. 1.1 + 1.2 too.

Inspection of the proof for Theorem 13 reveals that the argument for even-
tual strong accuracy is made in the suffix in which all faulty processes have
crashed and the suspect lists at all correct processes have stopped changing (by
Lemma 12). Since Lemma 12 holds for Alg. 1.1 + 1.2 as well, every run of Alg. 1.1
+ 1.2 has a suffix in which all faulty processes have crashed and the suspect lists
at all correct processes have stopped changing. In such a suffix, each pair (i, j)
of correct processes either (a) trust each other permanently, or (b) suspect each
other permanently (by Lemmas 10 and 11).

In the former case, processes ¢ and j send heavyweight heartbeats for the final

change in their suspect lists until the acks for the reception of such a heavyweight
heartbeat are received; after the reception of these acks, the j** row in i’s suspect
matrix is the same as j’s suspect list, and wvice versa. In the latter case, i and
J stop sending heartbeats to each other (Lemma 11). Thus, in this suffix, the
suspect matrices S; and S; stay constant. The same arguments in the proof for
Theorem 13 show that processes ¢ and j always send heartbeats to each other
infinitely often. Then Lemma 10 implies eventual strong accuracy.
Crash Quiescence. From the eventual strong accuracy property we know that
every correct process is eventually and permanently trusted by all correct pro-
cesses. Thus, the last change in the suspect list at each correct process is suc-
cessfully communicated to all other correct processes in the system by Alg. 1.2.
This allows us to apply the proof for Theorem 14 to Alg. 1.1 + 1.2, thus showing
that Alg. 1.1 + 1.2 is crash quiescent in majority-correct runs.

5.1 Communication Bit Complexity

Alg. 1.2 uses sequence numbers in the heartbeats. Hence, in a finite prefix of
the execution, heartbeat size may be unbounded. However, as we show next,
eventually the processes send only lightweight heartbeats of size O(log(n)) bits.

Consider an infinite suffix of any run of Alg. 1.1 4+ 1.2 that starts after (a)
all processes that crash in the run have already crashed, (b) all correct processes
have started permanently suspecting crashed processes, and (c) no correct pro-
cess is suspected by any correct process. In this suffix, the local suspect list at
each process stops changing.

The finite number of heartbeats that were sent before the start of the suf-
fix are either dropped or delivered in finite time. Subsequently, all heartbeats
in transit in the system are ones that are sent during the suffix. Since a pro-
cess continues to send heavyweight heartbeats until the sending process receives
an ack for the latest change in the suspect list, sufficiently many heavyweight
heartbeats for the final change in the suspect list are guaranteed to be sent. This
ensures that these heartbeats are delivered to their recipients, and the acks for
these heavyweight heartbeats are received by the senders.

Thus, eventually all processes have received acks for the last change in their
suspect list from all correct processes. Consequently, eventually all processes
send only lightweight heartbeats, and hence the piggyback acks are only for
lightweight heartbeats as well. In other words, eventually the heartbeats sent by
all correct processes are lightweight heartbeats with sequence number 0 and ack
number 0. Such heartbeats require O(log(n)) bits (including the bits needed to
encode the sender and the recipient identifier information).

In majority-correct runs, since the asymptotic message complexity is O(c?),
the communication bit complexity is O(c? log(n)). Similarly, in runs where half
or more processes crash, since the asymptotic message complexity is O(n - ¢),
the communication bit complexity is O(n - clog(n)).

The asymptotic communication bit complexity of Alg. 1.1 4+ 1.2 for majority-
correct runs is lower than its non-crash-quiescent counterparts, and in runs where
half or more processes crash, the asymptotic bit complexity is no worse than its
non-crash-quiescent counterparts. Thus, we have achieved crash-quiescence for
OP in Ecpps in majority-correct runs with improved message complexity and
(importantly) improved bit complexity.

6 Conclusion

We have proposed a new property of distributed algorithms called crash quies-
cence. An algorithm is said to be crash quiescent if all correct processes even-
tually stop sending messages to any crashed process. We have motivated the
importance of crash quiescence in the context of the eventually perfect failure
detector &P. We have shown that in some partially-synchronous environments
where a bounded, but unknown, number of consecutive messages may be arbi-
trarily late or lost, it is impossible to achieve crash quiescence for even GW —
the weakest failure detector in the Chandra-Toueg hierarchy. However, in such
partially synchronous environments, we have presented an implementation of &P
that is correct in all runs and that is crash quiescent in runs where a majority of
processes are correct. Furthermore, we have presented a refinement of our OGP
algorithm to optimize the message size so that the resulting bit complexity per
utilized link is asymptotically better than or equal to that of non-crash-quiescent
counterparts.

References

10.

11.

12.

13.

14.

15.

16.

. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM 43(2) (1996) 225-267

Mostefaoui, A., Mourgaya, E., Raynal, M.: An introduction to oracles for asyn-
chronous distributed systems. Future Gener. Comput. Syst. 18(6) (2002) 757-767
Aguilera, M.K., Chen, W., Toueg, S.: On quiescent reliable communication. STAM
Journal on Computing 29(6) (2000) 2040-2073

Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35(2) (1988) 288-323

Sastry, S., Pike, S.M.: Eventually perfect failure detection using ADD channels.
In: Proceedings of the 5th International Symposium on Parallel and Distributed
Processing and Applications. (2007) 483-496

Sastry, S., Pike, S.M., Welch, J.L.: Crash fault detection in celerating environments.
In: Proceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium. (2009) 1-12

Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Proceedings of the 15th International Symposium on Distributed Com-
puting. (2001) 108-122

Pike, S.M., Song, Y., Sastry, S.: Wait-free dining under eventual weak exclusion.
In: Proceedings of the 9th International Conference on Distributed Computing and
Networking. (2008) 135-146

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual ex-
clusion in asynchronous systems with failure detectors. Journal of Parallel and
Distributed Computing 65(4) (2005) 492-505

Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: Proceedings of the 33rd International Conference on Dependable
Systems and Networks. (2003) 351-360

Bertier, M., Marin, O., Sens, P.: Implementation and performance evaluation of an
adaptable failure detector. In: Proceedings of the 32nd International Conference
on Dependable Systems and Networks. (2002) 354-363

Larrea, M., Arévalo, S., Ferndndez, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Proceedings of the 13th
International Symposium on Distributed Computing. (1999) 34-49

Fetzer, C., Raynal, M., Tronel, F.: An adaptive failure detection protocol. In:
Proceedings of the 7th Pacific Rim International Symposium on Dependable Com-
puting. (2001) 146-153

Fetzer, C., Schmid, U., Siisskraut, M.: On the possibility of consensus in asyn-
chronous systems with finite average response times. In: Proceedings of the 25th
International Conference on Distributed Computing Systems. (2005) 271-280
Larrea, M., Lafuente, A.: Communication-efficient implementation of failure de-
tector classes ¢P and ¢Q. In: Proceedings of the 19th International Symposium
on Distributed Computing. (2005) 495-496

Larrea, M., Fernandez, A., Arévalo, S.: On the implementation of unreliable failure
detectors in partially synchronous systems. IEEE Transactions on Computers
53(7) (2004) 815-828

