
Reliable Networks With Unreliable Sensors⋆

Srikanth Sastry1, Tsvetomira Radeva2, Jianer Chen1, and Jennifer L. Welch1

1 Department of Computer Science and Engineering
Texas A&M University

College Station, TX 77840, USA
{sastry, chen, welch}@cse.tamu.edu

2 Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
radeva@csail.mit.edu

Abstract. Wireless sensor networks (WSNs) deployed in hostile envi-
ronments suffer from a high rate of node failure. We investigate the effect
of such failure rate on network connectivity. We provide a formal analysis
that establishes the relationship between node density, network size, fail-
ure probability, and network connectivity. We show that as network size
and density increase, the probability of network partitioning becomes ar-
bitrarily small. We show that large networks can maintain connectivity
despite a significantly high probability of node failure. We derive math-
ematical functions that provide lower bounds on network connectivity
in WSNs. We compute these functions for some realistic values of node
reliability, area covered by the network, and node density, to show that,
for instance, networks with over a million nodes can maintain connec-
tivity with a probability exceeding 99% despite node failure probability
exceeding 57%.

1 Introduction

Wireless Sensor Networks (WSNs) [2] are being used in a variety of applications
ranging from volcanology [21] and habitat monitoring [18] to military surveil-
lance [10]. Often, in such deployments, premature uncontrolled node crashes are
common. The reasons for this include, but are not limited to, hostility of the
environment (like extreme temperature, humidity, soil acidity, and such), node
fragility (especially if the nodes are deployed from the air on to the ground),
and the quality control in the manufacturing of the sensors. Consequently, crash
fault tolerance becomes a necessity (not just a desirable feature) in WSNs. Typi-
cally, a sufficiently dense node distribution with redundancy in connectivity and
coverage provides the necessary fault tolerance. In this paper, we analyze the
connectivity fault tolerance of such large scale sensor networks and show how,
despite high unreliability, flaky sensors can build robust networks.

⋆ This work was supported in part by NSF grant 0964696 and Texas Higher Education
Coordinating Board grant NHARP 000512-0130-2007
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The results in this paper address the following questions: Given a static WSN
deployment (of up to a few million nodes) where (a) the node density is D nodes
per unit area, (b) the area of the region is Z units, and (c) each node can fail3

with an independent and uniform probability ρ: what is the probability P that
the network is connected (that is, the network is not partitioned)? What is the
relationship between P , ρ, D, and Z?

Motivation. The foregoing questions are of significant practical interest. A
typical specification for designing a WSN is the area of coverage, an upper bound
on the (financial) cost, and QoS guarantees on connectivity (and coverage). High
reliability sensor nodes offer better guarantees on connectivity but also increase
the cost. An alternative is to reduce the costs by using less reliable nodes, but
the requisite guarantees on connectivity might necessitate greater node density
(that is, greater number of nodes per unit area), which again increases the cost.
As a network designer, it is desirable to have a function that accepts, as input,
the specifications of a WSN and outputs feasible and appropriate design choices.
We derive the elements of such a function in Sect. 6 and demonstrate the use of
the results from Sect. 6 in Sect. 7.

Contribution. This paper has three main contributions. First, we formalize
and prove the intuitive conjecture that as node reliability and/or node den-
sity of a WSN increases, the probability of connectivity also increases. We pro-
vide a probabilistic analysis for the relationship between node reliability (ρ),
node density (D), area of the WSN region (Z), and the probability of network
connectivity(P ); we provide lower bounds for P as a function of ρ, D, and Z.

Second, we provide concrete lower bounds for expected connectivity proba-
bility for various reasonable values of ρ, D, and Z.

Third, we use a new technique of hierarchical network analysis to derive the
lower bounds on a non-hierarchical WSN. To our knowledge, we are the first
to utilize this approach in wireless sensor networks. The approach, model, and
proof techniques themselves may be of independent interest.

Organization. The rest of this paper is organized as follows: The related
work is described next in Section 2. The system model assumptions are discussed
in Section 3. The methodology includes tiling the plane with regular hexagons.
The analysis and results in this paper use a topological object called a level-z
polyhex that is derived from a regular hexagon. The level-z polyhex is introduced
in Section 4. Section 5 introduces the notion of level-z connectedness of an arbi-
trary WSN region. Section 6 uses this notion of level-z to formally establish the
relationship between P , ρ, D, and Z. Finally, section 7 provides lower bounds
on connectivity for various values of ρ, D, and Z.

2 Related Work

There is a significant body of work on static analysis of topological issues associ-
ated with WSNs [12]. These issues are discussed in the context of coverage [13],
connectivity [19], and routing [1].

3 Node is said to fail if it crashes prior to its intended lifetime. See Sect. 3 for details.
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The results in [19] focus on characterizing the fault tolerance of sensor net-
works by establishing the k-connectivity of a WSN. However, such characteriza-
tion results in a poor lower bound of k − 1 on the fault tolerance which corre-
sponds to the worst-case behavior of faults. It fails to characterize the expected
probability of network partitioning in practical deployments. In other related
results, Bhandari et al. [5] focus on optimal node density (or degree) for a WSN
to be connected w.h.p, and Kim et al. [11] consider connectivity in randomly
duty-cycled WSNs in which nodes take turns to be active to conserve power.
A variant of network connectivity, called partial connectivity, is explored in [6]
which derives derives the relationship between node density and the percentage
f of the network expected to be connected. Our research addresses a different,
but related question: given a fixed WSN region with a fixed initial node density
(and hence, degree) and a fixed failure probability, what is the probability that
the WSN will remain connected?

The results in [16, 4, 22, 20, 3] establish and explore the relationship between
coverage and connectivity. The results in [22] and [20] show that in large sensor
networks if the communication radius rc is at least twice the coverage radius rs,
then coverage of a convex area implies connectivity among the non-faulty nodes.
In [4], Bai et al. establish optimal coverage and connectivity in regular patterns
including square grids and hexagonal lattice where rc/rs < 2 by deploying addi-
tional sensors at specific locations. Results from [16] show that even if rc = rs,
large networks in a square region can maintain connectivity despite high failure
probability; however, connectivity does not imply coverage. Ammari et al., ex-
tend these results in [3] to show that if rc/rs = 1 in a k-covered WSN, then the
network fault tolerance is given by 4rc(rc + rs)k/r2

s − 1 for a sparse distribution
of node crashes. Another related result [17] shows that in a uniform random
deployment of sensors in a WSN covering the entire region, the probability of
maintaining connectivity approaches 1 as rc/rs approaches 2.

Our work differs from the works cited above in three aspects: (a) we focus
exclusively on maintaining total connectivity, (b) while the results in [16, 4, 22,
20] apply to specific deployment patterns or shape of a region, our results and
methodology can be applied to any arbitrary region and any constant node
density, and (c) our analysis is probabilistic insofar as node crashes are assumed
to be independent random events, and we focus on the probability of network
connectivity in the average case instead of the worst case.

The tiling used in our model induces a hierarchical structure which can be
used to decompose the connectivity property of a large network into connec-
tivity properties of constituent smaller sub-networks of similar structure. This
approach was first introduced in [9], and subsequently used to analyze fault tol-
erance of hypercube networks [7] and mesh networks [8]. Our approach differs
from those in [7] and [8] as we construct higher order polyhex tiling using the un-
derlying hexagons to derive a recursive function that establishes a lower bound
on network connectivity as a function of ρ and D.
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3 System Model

We make the following simplifying assumptions:

– Node. The WSN has a finite fixed set of n nodes. Each node has a commu-
nication radius R.

– Region and tiles. A WSN region is assumed to be a finite plane tiled by
regular hexagons whose sides are of length l such that nodes located in a
given hexagon can communicate reliably4 with all the nodes in the same
hexagon and adjacent hexagons. We assume that each hexagon contains at
least D nodes.

– Faults. A node can fail only by crashing before the end of its intended
lifetime. Faults are independent and each node has a constant probability ρ
of failing.

– Empty tile. A hexagon is said to be empty if it contains only faulty nodes.

We say that two non-faulty nodes p and p′ are connected if either p and p′

are in the same or neighboring hexagons, or there exists some sequence of non-
faulty nodes pi, pi+1, . . . , pj such that p (and p′, respectively) and pi (and pj ,
respectively) are in adjacent hexagons, and pk and pk+1 are in adjacent hexagons,
where i ≤ k ≤ j. We say that a region is connected if every pair of non-faulty
nodes p and p′ in the region are connected.

4 Higher Level Tilings: Polyhexes

For the analysis of WSNs in an arbitrary region, we use of the notion of higher
level tilings by grouping sets of contiguous hexagons into ‘super tiles’ such that
some specific properties (like the ability to tile the Euclidean plane) are pre-
served. Such ‘super tiles’ are called level-z polyhexes. Different values of z spec-
ify different level-z polyhexes. In this section we define a level-z polyhex and
specify its properties.

The following definitions are borrowed from [14]: A tiling of the Euclidean
plane is a countable family of closed sets called tiles, such that the union of
the sets is the entire plane and such that the interiors of the sets are pairwise
disjoint. We are concerned only with monohedral tilings — tilings in which every
tile is congruent to a single fixed tile called the prototile. In our case, a regular
hexagon is a prototile. We say that the prototile admits the tiling. A patch

is a finite collection of non-overlapping tiles such that their union is a closed
topological disk5. A translational patch is a patch such that the tiling consists
entirely of a lattice of translations of that patch.

4 We assume that collision resolution techniques are always successful in ensuring
reliable communication.

5 A closed topological disk is the image of a closed circular disk under a homeomor-
phism. Roughly speaking, homeomorphism is a continuous stretching and bending
of the object into a new shape (you are not allowed to tear or ‘cut holes’ into the
object). Thus, any two-dimensional shape that has a closed boundary, finite area,
and no ‘holes’ is a closed topological disk. This includes squares, circles, ellipses,
hexagons, and polyhexes.
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(a) The gray tiles form a
level-2 polyhex.

(b) A level-3 polyhex formed
by 7 level-2 polyhexes A–F.

Fig. 1. Examples of Polyhexes

We now define a translational patch of regular hexagons called level-z poly-

hexes for z ∈ N as follows:

– A level-1 polyhex is a regular hexagon: a prototile.

– A level-z polyhex for z > 1 is a translational patch of seven level-(z − 1)
polyhexes that admits a hexagonal tiling.

Note that each level-z polyhex is made of seven level-(z − 1) polyhexes.
Therefore, the total number of tiles in a level-z polyhex is size(z) = 7z−1.

Figure 1(a) illustrates the formation of a level-2 polyhex with seven regular
hexagons, and Fig. 1(b) illustrates how seven level-2 polyhexes form a level-3
polyhex. A formal proof that such level-z polyhexes exist for arbitrary values of
z (in an infinite plane tessellated by regular hexagons) is available at [15].

5 Level-z Polyhexes and Connectivity

The analysis in Section 6 is based on the notion of level-z connectedness that
is introduced here. First, we define a ‘side’ to each level-z polyhex. Second, we
introduce the concepts of connected level-z polyhexes and level-z connectedness

in a WSN region. Finally, we show how level-z connectedness implies that all
non-faulty nodes in a level-z polyhex of a WSN are connected. We use this
result and the definition of level-z connectedness to derive a lower bound on the
probability of network connectivity in Section 6.

Side. The set of boundary hexagons that are adjacent to a given level-z
polyhex are said be a ‘side’ of the level-z polyhex. Since a level-z polyhex can
have 6 neighboring level-z polyhexes, every level-z polyhex has 6 ‘sides’. The
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number of hexagons along each ‘side’ (also called the ‘length of the side’) is

given by sidelen(z) = 1 +
∑z−2

i=0 3i where z ≥ 2.6

We now define what it means for a level-z polyhex to be connected. Intu-
itively, we say that a level-z polyhex is connected if the network of nodes in the
level-z polyhex is not partitioned.

Connected level-z polyhex. A level-z polyhex Tzi is said to be connected

if, given the set Λ of all hexagons in Tzi that contain at least one non-faulty
node, for every pair of hexagons p and q from Λ, there exists some (possibly
empty) sequence of hexagons t1, t2, . . . , tj such that {t1, t2, . . . , tj} ⊆ Λ, and t1
is a neighbor of p, every ti is a neighbor of ti+1, and tj is a neighbor of q.

Note that if a level-z polyhex is connected, then all the non-faulty nodes in
the level-z polyhex are connected as well.

We are now ready to define the notion of level-z connectedness in a WSN
region.

Level-z connectedness. A WSN region W is said to be level-z connected if
there exists some partitioning of W into disjoint level-z polyhexes such that each
such level-z polyhex is connected, and for every pair of such level-z polyhexes
Tzp and Tzq, there exists some (possibly empty) sequence of (connected) level-
z polyhexes Tz1, Tz2, . . . , Tzj (from the partitioning of W) such that Tz1 is a
neighbor of Tzp, every Tzi is a neighbor of Tz(i+1), and Tzj is a neighbor of Tzq.

Additionally, each ‘side’ of Tzi has at least ⌈ sidelen(z)
2 ⌉ non-empty hexagons.

We are now ready to prove the following theorem:

Theorem 1 Given a WSN region W, if W is level-z connected, then all non-

faulty nodes in W are connected.

Proof. Suppose that the region W is level-z connected. It follows that there
exists some partitioning Λ of W into disjoint level-z polyhexes such that each
such level-z polyhex is connected, and for every pair of such level-z polyhexes
Tzp and Tzq, there exists some (possibly empty) sequence of (connected) level-
z polyhexes Tz1, Tz2, . . . , Tzj (from the partitioning of W) such that Tz1 is a
neighbor of Tzp, every Tzi is a neighbor of Tz(i+1), and Tzj is a neighbor of Tzq.

Additionally, each ‘side’ of Tzi has at least ⌈ sidelen(z)
2 ⌉ non-empty hexagons.

To prove the theorem, it is sufficient to show that for any two non-faulty nodes
in W in hexagons p and q, respectively, the hexagons p and q are connected.

Let hexagon p lie in a level-z polyhex Tzp (∈ Λ), and let q lie in a level-z
polyhex Tzq (∈ Λ). Note that since Λ is a partitioning of W , either Tzp = Tzq

or Tzp and Tzq are disjoint. If Tzp = Tzq, then since Tzp is connected, it follows
that p and q are connected. Hence, all non-faulty nodes in p are connected with
all non-faulty nodes in q. Thus, the theorem is satisfied.

If Tzp and Tzq are disjoint, then it follows from the definition of level-
z connectedness that there exists some sequence of connected level-z polyhex
Tz1, Tz2, . . . , Tzj such that Tz1 is a neighbor of Tzp, every Tzi is a neighbor of

6 The proof for this equation is a straightforward induction on z and the proof has
been omitted.
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Tz(i+1), and Tzj is a neighbor of Tzq. Additionally, each ‘side’ of Tzi has at least

⌈ sidelen(z)
2 ⌉ non-empty hexagons.

Consider any two neighboring level-z polyhexes (Tzm, Tzn) ∈ Λ × Λ . Each
‘side’ of Tzm and Tzn has sidelen(z) hexagons. Therefore, Tzm and Tzn have
sidelen(z) boundary hexagons such that each such hexagon from Tzm (and re-
spectively, Tzn) is adjacent to two boundary hexagons in Tzn (and respectively,
Tzm), except for the two boundary hexagons on either end of the ‘side’ of Tzm

(and respectively, Tzn); these two hexagons are adjacent to just one hexagon in

Tzn (and respectively, Tzm). We know that at least ⌈ sidelen(z)
2 ⌉ of these bound-

ary hexagons are non-empty. It follows that there exists at least one non-empty
hexagon in Tzm that is adjacent to a non-empty hexagon in Tzn. Such a pair of
non-empty hexagons (one in Tzm and the other in Tzn) form a “bridge” between
Tzm and Tzn allowing nodes in Tzm to communicate with nodes in Tzn. Since
Tzm and Tzn are connected level-z polyhexes, it follows that nodes within Tzm

and Tzn are connected as well. Additionally, we have established that there exist
at least two hexagons, one in Tzm and one in Tzn that are connected. It follows
that nodes in Tzm and Tzn are connected with each other as well.

Thus, it follows that Tzp and Tz1 are connected, every Tzi is connected with
Tz(i+1), and Tzj is connected with Tzq. From the transitivity of connectedness, it
follows that Tzp is connected with Tzq. That is, all non-faulty nodes in hexagon p
are connected with all non-faulty nodes in q. Since p and q are arbitrary hexagons
in W , it follows that all the nodes in W are connected.

Theorem 1 provides the following insight into connectivity analysis of a WSN:
for appropriate values of z, a level-z polyhex has fewer nodes than the entire re-
gion W . In fact, a level-z polyhex could have orders of magnitude fewer nodes
than W . Consequently, the analysis of connectedness of a level-z polyhex is sim-
pler and easier than the connectedness of the entire region W . Using Theorem 1,
we can leverage such an analysis of a level-z polyhex to derive a lower bound on
the connectivity probability of W . The foregoing motivation is explored next.

6 On Fault Tolerance of WSN Regions

We are now ready to derive a lower bound on the connectivity probability of an
arbitrarily-shaped WSN region. Let W be a WSN region with node density of D
nodes per hexagon such that the region is approximated by a patch of x level-z
polyhexes that constitute a set Λ. Let each node in the region fail independently
with probability ρ. Let ConnW denote the event that all the non-faulty nodes in
the region W are connected. Let Conn(T,z,side) denote the event that a level-z
polyhex T is connected and each ‘side’ of T has at least ⌈sidelen(z)/2⌉ non-
empty hexagons.

We know that if W is level-z connected, then all the non-faulty nodes in
W are connected. Also, W is level-z connected if: ∀T ∈ Λ :: Conn(T,z,side).
Therefore, the probability that W is connected is bounded by: Pr [ConnW ] ≥
(Pr

[

Conn(T,z,side)

]

)x.
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Thus, in order to find a lower bound on Pr [ConnW ], we have to find the
lower bound on (Pr

[

Conn(T,z,side)

]

)x.

Lemma 2 In a level-z polyhex T with node density of D nodes per hexagon,

suppose each node fails independently with a probability ρ. Then the probability

that T is connected and each ‘side’ of T has at least ⌈sidelen(z)/2⌉ non-empty

hexagons is given by Pr
[

Conn(T,z,side)

]

=
∑size(z)

i=0 Nz,i(1 − ρD)size(z)−iρD×i,

where Nz,i is the number of ways by which we can have i empty hexagons and

size(z)− i non-empty hexagons in a level-z polyhex such that the level-z polyhex

is connected and each ‘side’ of the level-z polyhex has at least ⌈sidelen(k)/2⌉
non-empty hexagons.

Proof. Fix i hexagons in T to be empty such that T is connected and each ‘side’
of T has at least ⌈sidelen(k)/2⌉ non-empty hexagons. Since nodes fail indepen-
dently with probability ρ, and there are D nodes per hexagon, the probability
that a hexagon is empty is ρD. Therefore, the probability that exactly i hexagons
are empty in T is given by (1− ρD)size(z)−iρD×i. By assumption, there are Nz,i

ways to fix i hexagons to be empty. Therefore, the probability that T is connected
and each ‘side’ of T has at least ⌈sidelen(k)/2⌉ non-empty hexagons despite i
empty hexagons is given by Nz,i(1 − ρD)size(z)−iρD×i. However, note that we
can set i (the number of empty hexagons) to be anything from 0 to size(z).

Therefore, Pr
[

Conn(T,z,side)

]

is given by
∑size(z)

i=0 Nz,i(1 − ρD)size(z)−iρD×i.

Given the probability of Conn(T,z,side), we can now establish a lower bound
for the probability that the region W is connected.

Theorem 3 Suppose each node in a WSN region W fails independently with

probability ρ, W has a node density of D nodes per hexagon and tiled by a patch

of x level-z polyhexes. Then the probability that all non-faulty nodes in W are

connected is at least (Pr
[

Conn(T,z,side)

]

)x

Proof. There are x level-z polyhexes in W . Note that if W is level-z connected,
then all non-faulty nodes in W are connected. However, observe that W is level-z
connected if each such level-z polyhex is connected and each ‘side’ of each such
level-z polyhex has at least ⌈sidelen(z)/2⌉ non-empty hexagons. Recall from
Lemma 2 that the probability of such an event for each polyhex is given by
Pr

[

Conn(T,z,side)

]

. Since there are x such level-z polyhex, and failure probabil-
ity of nodes (and hence disjoint level-z polyhexes) is independent, it follows that
the probability of W being connected is at least (Pr

[

Conn(T,z,side)

]

)x.

Note that the lower bound we have established depends on the function Nz,i

defined in Lemma 2. Unfortunately, to the best of our knowledge, there is no
known algorithm that computes Nz,i in a reasonable amount of time. Since this
is a potentially infeasible approach for large WSNs with millions of nodes, we
provide an alternate lower bound for Pr

[

Conn(T,z,side)

]

.

Lemma 4 The value of Pr
[

Conn(T,z,side)

]

from Lemma 2 is bounded below

by: Pr
[

Conn(T,z,side)

]

≥ (Pr
[

Conn(T,z−1,side)

]

)7 + (Pr
[

Conn(T,z−1,side)

]

)6 ×
ρD×size(z−1) where Pr

[

Conn(T,1,side)

]

= 1 − ρD.
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Proof. Recall that a level-z polyhex consists for seven level-(z−1) polyhexes with
one internal level-(z − 1) polyhex and six outer level-(z − 1) polyhexes. Observe
that a level-z polyhex satisfies Conn(T,z,side) if either (a) all the seven level-
(z − 1) polyhexes satisfy Conn(T,z−1,side), or (b) the internal level-(z − 1) poly-
hex is empty and the six outer level-(z − 1) polyhexes satisfy Conn(T,z−1,side).
From Lemma 2 we know that the probability of a level-(z−1) polyhex satisfying
Conn(T,z−1,side) is given by Pr

[

Conn(T,z−1,side)

]

and the probability of a level-

(z − 1) polyhex being empty is ρD×size(z−1). For a level-1 polyhex (which is a
regular hexagon tile), the probability that the hexagon is not empty is 1 − ρD.
Therefore, the probability that cases (a) or (b) is satisfied for z > 1 is given
by (Pr

[

Conn(T,z−1,side)

]

)7 + (Pr
[

Conn(T,z−1,side)

]

)6 × ρD×size(z−1). There-

fore, Pr
[

Conn(T,z,side)

]

≥ (Pr
[

Conn(T,z−1,side)

]

)7 +(Pr
[

Conn(T,z−1,side)

]

)6×
ρD×size(z−1) where Pr

[

Conn(T,1,side)

]

= 1 − ρD.

Analyzing the connectivity probability for WSN regions that are level-z
connected where z is large, can be simplified by invoking Lemma 4, and re-
ducing the complexity of the computation to smaller values of z for which
Pr

[

Conn(T,z,side)

]

can be computed (by brute force) fairly quickly.

7 Discussion

Choosing the size of the hexagon. For the results from the previous section
to be of practical use, it is important that we choose the size of the hexagons
in our system model carefully. On the one hand, choosing very large hexagons
could violate the system model assumption that nodes can communicate with
nodes in neighboring hexagons, and on the other hand, choosing small hexagons
could result in poor lower bounds and thus result in over-engineered WSNs that
incur high costs but with incommensurate benefits.

If we make no assumptions about the locations of nodes within hexagons,
then the length l of the sides of a hexagon must be at most R/

√
13 to ensure

connectivity between non-faulty nodes in neighboring hexagons. However, if the
nodes are “evenly” placed within each hexagon, then l can be as large as R/2
while still ensuring connectivity between neighboring hexagons. In both cases,
the requirement is that the distance between two non-faulty nodes in neighboring
hexagons is at most R.
Computing Nz,i from Lemma 2. The function Nz,i does not have a closed-
form solution. It needs to be computed through exhaustive enumeration. We
computed Nz,i for some useful values of z and i and included them in Table 1.
Using these values, we applied Theorem 3 and Lemma 4 to sensor networks
of different sizes, node densities, and node failure probabilities. The results are
presented in Table 2. Next, we demonstrate how to interpret and understand
the entries in these tables through an illustrative example.
Practicality. Our results can be utilized in the following two practical scenarios.
(1) Given an existing WSN with known node failure probability, node density,
and area of coverage, we can estimate the probability of connectivity of the
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z i Nz,i z i Nz,i

k > 2 1 size(k) = 7k−1 3 7 74729943

3 2 1176 3 8 361856172

3 3 18346 3 9 1481515771

3 4 208372 4 2 58653

3 5 1830282 4 3 6666849

3 6 12899198 5 2 2881200

Table 1. Computed Values of Nz,i

Node
density D

No. of
Nodes

Node failure
prob. ρ

No. of
Nodes

Node failure
prob. ρ

z = 2 (level-2 polyhex) z = 5 (level-5 polyhex)

3 21 35% 7203 24%

5 35 53% 12005 40%

10 70 70% 24010 63%

z = 3 (level-3 polyhex) z = 6 (level-6 polyhex)

3 137 37% 50421 19%

5 245 50% 84035 36%

10 490 70% 24010 63%

z = 4 (level-4 polyhex) z = 7 (level-7 polyhex)

3 1029 29% 352947 15%

5 1715 47% 588245 31%

10 3430 67% 1176490 57%

Table 2. Various values of node failure probability ρ, node density D, and level-z
polyhex that yield network connectivity probability exceeding 99%

entire network. First, we decide on the size of a hexagon as discussed previously,
and then we consider level-z polyhexes that cover the region. Next, we apply
Theorem 3 and Lemma 4 to compute the probability of connectivity of the
network for the given values of ρ, D and z, and the precomputed values of Nz,i

in Table 1.

(2) The results in this paper can be used to design a network with a specified
probability of connectivity. In this case, we decide on a hexagon size that best
suits the purposes of the sensor network and determine the level of the poly-
hex(es) needed to cover the desired area. As an example, consider a 200 sq. km
region (approximately circular, so that there are no ‘bottle neck’ regions) that
needs to be covered by a sensor network with a 99% connectivity probability. Let
the communication radius of each sensor be 50 meters. The average-case value of
the length l of the side of the hexagon is 25 meters, and the 200 sq. km region is
tiled by a single level-7 polyhex. From Table 2, we see that if the network consists
of 3 nodes per hexagon, then the region will require about 352947 nodes with
a failure probability of 15% (85% reliability). However, if the node redundancy
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is increased to 5 nodes per hexagon, then the region will require about 588245
nodes with a failure probability of 31% (69% reliability). If the node density is
increased further to 10 nodes per hexagon, then the region will require about
1176490 nodes with a failure probability of 57% (43% reliability).
On the lower bounds. An important observation is that these values for node
reliability are lower bounds, but are definitely not tight bounds. This is largely
because in order to obtain tighter lower bounds, we need to compute the prob-
ability of network connectivity from Theorem 3. However, this requires us to
compute the values for Nz,i for all values of i ranging from 1 to z, which is
expensive for z exceeding 3. Consequently, we are forced to use the recursive
function in Lemma 4 for computing the network connectivity for larger net-
works. This reduces the accuracy of the lower bound significantly. A side effect
of this error is that in Table 2, we see that for a given D, ρ decreases as z in-
creases. If we were to invest the time and computing resources to compute Nz,i

for higher values of z (5, 6, 7, and greater), then the computed values for ρ in
Table 2 would be significantly larger.
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