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Abstract. Failure detectors have long been viewed as abstractions for the synchronism present in dis-
tributed system models. However, investigations into the exact amount of synchronism encapsulated by
a given failure detector have met with limited success. The reason for this is that traditionally, models
of partial synchrony are specified with respect to real time, but failure detectors do not encapsulate real
time. Instead, we argue that failure detectors encapsulate the fairness in computation and communica-
tion. Fairness is a measure of the number of steps executed by one process relative either to the number
of steps taken by another process or relative to the duration for which a message is in transit. We argue
that failure detectors are substitutable for the fairness properties (rather than real-time properties) of
partially synchronous systems. We propose four fairness-based models of partial synchrony and demon-
strate that they are, in fact, the ‘weakest system models’ to implement the canonical failure detectors
from the Chandra-Toueg hierarchy. We also propose a set of fairness-based models which encapsulate
the Gc parametric failure detectors which eventually and permanently suspect crashed processes, and
eventually and permanently trust some fixed set of c correct processes.

Keywords: Failure Detectors, Partial Synchrony, Fairness, Crash Faults, Fault Tolerance, Schedulers

1 Introduction

The inability to distinguish a crashed process from a slow process makes it impossible to solve several classic
problems in distributed computing in crash-prone asynchronous systems [22, 21]. Efforts to circumvent this
impossibility have spawned two complementary approaches. The first approach, called partial synchrony [18,
17], focuses on assuming explicit temporal guarantees on computation and communication to enable crash
detection. The second approach focuses on augmenting asynchronous systems with oracles, called failure
detectors [11], that provide potentially incorrect information about process crashes in the system.

It has long been held that failure detectors encapsulate partial synchrony. More precisely, a failure detector
D encapsulates a partially synchronous system model M if and only if the following two conditions hold: (1)
every problem solvable in an asynchronous system augmented with D is also solvable in system model M ,
and (2) every problem solvable in system model M is also solvable in an asynchronous system augmented
with D. As such, if D encapsulates M , then D is substitutable for M because any problem solvable in M is

? A preliminary version of this paper was presented at the 14th International Conference On Principles Of Distributed
Systems (OPODIS) in 2010. This work is supported in part by NSF grants CCF-0964696 and CCF-0937274,
and Texas Higher Education Coordinating Board grant NHARP 000512-0130-2007. This works is also partially
supported by Center for Science of Information (CSoI), an NSF Science and Technology Center, under grant
agreement CCF-0939370.



also solvable in asynchrony augmented with D. Alternatively (and informally), the notion of encapsulation
by a failure detector may be viewed synonymously with the notion of mutual reducibility; that is, a failure
detector D encapsulates a system model M if and only if (1) there exists an algorithm that implements D in
system model M , and (2) there exists an asynchronous algorithm that queries D and implements a ‘virtual’
system that satisfies the properties of M .

Partial Synchrony. A system model is partially synchronous [18] if it provides potentially incomplete, or
unknown, temporal bounds on computational and/or communicational quantities such as message delays
and process speeds. Despite such uncertainty, partial synchrony is useful for solving problems in crash-prone
distributed systems, and several such models have been proposed in the literature(e.g., [18, 17, 27, 40, 41, 26,
39]). These models vary in the information they provide about these bounds, and consequently they have
different crash detection capabilities. One way to formalize this notion of crash detection capability is with
failure detectors.

Failure Detectors. Informally, a failure detector [11] can be viewed as a system service (or oracle) that can be
queried for (potentially unreliable) information about process crashes. The unreliable outputs of such oracles
can be false positives (suspecting live processes) or false negatives (not suspecting crashed processes). From
an empirical standpoint, most fault-tolerant problems in distributed computing that are otherwise unsolvable
in crash-prone asynchronous systems can be solved by augmenting the asynchronous system with either (1)
adequate degrees of partial synchrony [18] or (2) sufficiently powerful oracles [31]. This observation suggests
that the axiomatic properties of oracles might encapsulate the temporal properties of (suitably defined)
models of partial synchrony. Accordingly, this conjecture has led to the pursuit of ‘weakest system models’
to implement various classes of oracles.

Current work on the weakest system models for oracles (see Sect. 2) has met with limited success partly
because the proposed system models assume real-time bounds on communication (and possibly computation
too). Unfortunately, failure detectors do not preserve such real-time bounds. To find such weakest system
models, we need to address a more fundamental question: what precisely about partial synchrony do failure
detectors preserve?

Results. We answer the foregoing question by demonstrating that failure detectors (at least when restricted
to the Chandra-Toueg hierarchy [11]) encapsulate fairness: a measure of the number of steps executed by
a process relative to other events in the system. We argue that oracles are substitutable for the fairness
properties (rather than real-time properties) of partially synchronous systems. We propose four fairness-
based models of partial synchrony and demonstrate that they are, in fact, the ‘weakest system models’ to
implement the canonical failure detectors from the Chandra-Toueg hierarchy in the presence of arbitrary
number of crash faults. We extend our results to the failure detectors introduced in [6] and propose a family
of fairness-based partially synchronous models that are encapsulated by these failure detectors.

Significance. Our results further the shift in the direction of oracular research away from real-time notions
of partial synchrony (which have traditionally been understood with respect to events that are essentially
external to the system) and towards fairness-based partial synchrony (which can be understood solely with
respect to other events that are internal to the system). In fact, our results suggest that fairness is the
currency for crash tolerance and that research on weaker real-time bounds for crash tolerance should focus
on enforcing appropriate fairness constraints on empirical systems relative to which known oracles can be
implemented.

The constructions presented in the paper may be of independent interest. The scheduler presented in
Sect. 5 is ‘universal’ (relative to the canonical failure detectors from [11] and [6]) in the sense that a single
algorithm for the scheduler uses the available failure detector as a ‘plugin’ and automatically enforces the
maximal fairness encapsulated by that failure detector. Similarly, the failure-detector algorithm in Sect. 6 is
agnostic to the guarantees on fairness provided by the underlying system model; for fairer system models,
the algorithm automatically implements stronger failure detectors.
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Organization. We present related work in Sect. 2. Sect. 3 provides specifications for the asynchronous system
model, the four failure detectors from [11], and the four fairness-based partially synchronous systems that
we consider. Sects. 4–6 present the four equivalences between the failure detectors and the fairness-based
partially synchronous systems. We use the constructions from Sects. 4–6 in Sect. 7 and present a new family
of fairness-based system models that are equivalent to the failure detectors introduced in [6]. Finally, we
conclude with a discussion in Sect. 8.

2 Related Work

The Chandra-Toueg Hierarchy. In [11], Chandra and Toueg introduced eight failure detector oracles, which
form the Chandra-Toueg hierarchy. It was also shown in [11] that the Chandra-Toueg hierarchy can be
collapsed to the following four oracles: (1) the perfect failure detector (P), which never suspects any process
before the process crashes, after some (unknown) time permanently suspects all the crashed processes, and
never trusts a previously suspected process; (2) the eventually perfect failure detector (3P), which eventually
and permanently stops suspecting correct processes and permanently suspects all crashed processes; (3) the
strong failure detector (S), which never suspects some correct process, and eventually and permanently
suspects all the crashed processes; (4) the eventually strong failure detector (3S), which eventually and
permanently stops suspecting some correct process and permanently suspects all the crashed processes.

Chasing the Weakest Message-Passing Model. Among the aforementioned four oracles, a significant amount
of research focuses on 3S and 3P4. Among the many results on 3S and 3P, a line of work has focused on
identifying the weakest system model assumptions that suffice for implementing these oracles in message-
passing systems. One approach is to weaken real-time constraints on synchrony, while another approach is
to dispense with real-time altogether and instead constrain the relative ordering of certain events.

Under the first approach, consider system models to implement 3S. It is shown in [11] that a system
with unknown and eventual bounds on relative process speeds and message delay is sufficient to implement
3P, and thus to implement 3S. Subsequently, it is shown in [4] that 3S can be implemented in a system
model where all processes execute in lock-step synchrony and there exists some correct process whose links
are eventually timely; that is, eventually there is an upper bound on the message delay on these links.
In later work, focus shifts to the weakest system model to implement 3S (or the failure detector Ω [10]5

which is equivalent to 3S) in environments where up to f processes may crash. Furthermore, [30] shows
that Ω (and hence, 3S) can be implemented in system models where eventually some correct process has f
bidirectional links at all times. Note that the set of f timely links need not be fixed and may vary throughout
the execution. Independently, it is shown in [3] that Ω can be implemented in systems where some f outgoing
links at some correct process are eventually timely. The latter two results are superseded by [27] which shows
that Ω can be implemented in systems where eventually some correct process has f timely outgoing links
and the set of f timely links can vary throughout the execution.

Similarly, consider 3P implementations. It is shown in [11] that a system with unknown and/or eventual
bounds on relative process speeds and message delay is sufficient to implement 3P. Subsequently, it is shown
in [20] that some upper bound on the average delay of messages was sufficient to implement 3P in a system
with an unknown upper bound on absolute process speed, as long as the system uses stubborn links [25]. The
model is weakened to accommodate infinite message loss in [40] but still assumes a lower bound on absolute
process speed. The bound on absolute process speeds is relaxed in [41] to permit arbitrary process speeds
while maintaining a bound on relative process speeds.

4 The popularity of 3S and 3P is not just incidental. Despite apparently weak guarantees on crash fault detection,
3S has been shown to solve consensus and other related problems [11, 10], and 3P has been shown to solve
problems including dining philosophers [35, 36], stable leader election [2], quiescent reliable communication [1], and
contention management [24].

5 The leader-election failure detector Ω outputs the id of a process at each process. There is a time after which it
outputs the id of the same correct process at all correct processes.
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Under the second approach which constrains the relative ordering of certain events, consider 3S imple-
mentations. The first fairness-based system model to implement 3S is proposed in [19]. The models proposed
in [19], called Message Classification Models or MCM, classify messages as either ‘fast’ or ‘slow’ based on
their delays measured by some global clock that need not measure passage of real time6. In these models, a
message may be deliberately delayed to make it ‘slow’. Let S denote the set of system models where there
exists a correct process p and a (potentially unknown) time t such that every message sent to p, but not de-
liberately delayed, is a ‘fast’ message. The results in [19] demonstrate the system models in S are sufficiently
powerful to implement 3S.

The next significant fairness-based model sufficient to implement 3S is proposed in [32] (extended in [33])
for systems consisting of n processes with at most f crash faults in which executions progress in “rounds”
(the notion of a round is local to each process, not global), and processes send messages to all other processes
in each round. A round terminates at a process when the process has received messages from n−f processes
for that round. The model guarantees that there exists some correct process i such that eventually some
fixed subset consisting of f processes receive a message from i in each of their rounds. Subsequently, a weaker
system model (and weakest-to-date) is proposed in [5] which permits this subset consisting of f processes to
vary over time, as long as (eventually) at all times such a subset exists.

Similarly, among 3P implementations, the weakest to-date fairness-based message-passing models that
are sufficient for implementing 3P are the Θ-model [26] and the ABC model [39]. The Θ-model bounds the
ratio of the end-to-end communication delay of messages that are simultaneously in transit, while the ABC
model imposes a restriction on the ratio of the number of messages that can be exchanged between pairs
of processes in certain “relevant” segments of an asynchronous execution. However, all 3P implementations
in these models require at least two processes to be correct. Incidentally, the Θ-model and the ABC model
may be viewed as special cases of the MCM models from [19].

Note that all the above proposed system models, while claiming to be weakest to-date to implement
their respective failure detectors, do not claim to be the weakest to do so. The closest result to the ‘weakest’
message-passing system model to implement 3S, 3P, and other eventually accurate failure detectors is [6]
which follows an approach intermediate between the real-time-based and fairness-based approaches. The
results in [6] demonstrate that with respect to solvability 3S, 3P, and other failure detectors are “equivalent”
to various partially synchronous models. The authors of [6] are aware that their transformations do not
preserve bounds on real-time message delay. They claim that the bounds on message delay are preserved in
a ‘relativistic’ sense (in the extended technical report [7]), but they do not expound on the interpretation
of the term ‘relativistic’. Our work formalizes the ‘relativistic’ message delay as a form of communicational
fairness.

Weakest Models for Failure Detectors in Shared Memory. The notion of ‘capturing the power’ of a failure
detector is explored in [37, 38] for shared-memory systems. The results in [37, 38] show that the ‘power’ of
limited scope accuracy7 [42] failure detectors in systems with single-writer/multi-reader atomic registers can
be expressed as restrictions on the number of read/write operations by each process in every round (in other
words, fairness in the number of read/write operations per process per round). Our work, which focuses on
message-passing systems, deviates from [38] in three significant ways.

First, the weakest failure detectors for solving problems in message-passing systems may be different
from shared-memory systems. For example, consider wait-free consensus. The weakest failure detector for
this problem in asynchronous shared-memory systems is Ω [29] whereas the weakest failure detector to
solve the same problem in message-passing systems is (Ω,Σ)8; that is, process have access to two failure

6 For instance, a message could be classified as ‘slow’ if the message experiences a delay of at most (say) two times
the delay experienced by a ‘fast’ message

7 Limited scope accuracy is a version of weak accuracy wherein a correct process need not be trusted by all other
processes but only by a subset of the processes that are ostensibly ‘near’ the correct process. Limited scope accuracy
captures the idea that a process may detect failures reliably on the same local-area network, but less reliably over
a wide-area network.

8 Incidentally, the reason for the discrepancy between shared memory and message passing systems is the following.
The Ω failure detector is necessary to ensure the progress property of consensus: every correct process eventually
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detectors Ω and Σ [15]. Similarly, for solving wait-free k-set agreement, the weakest failure detector in
shared-memory systems is anti-Ωk

9[23], but the weakest failure detector in message-passing systems remains
an open problem [8, 9]. Therefore, ‘capturing the power’ of a failure detector in message-passing system
merits a separate investigation.

Second, asynchronous systems under message passing are ‘less synchronous’ than asynchronous systems
under shared-memory. In fact, an asynchronous shared-memory system is equivalent to an asynchronous
system under message passing that is augmented with the quorum failure detector Σ [15]. Consequently, the
results from [38] need not (and do not) carry over to message-passing systems.

Third, the results in [38] demonstrate fairness constraints only for classes of eventually accurate oracles;
in contrast, our results address the synchronism captured by fairness constraints for both eventually accurate
oracles and perpetually accurate oracles. To our knowledge, our work is the first to establish such equivalence
between partial synchrony and failure detectors with perpetual accuracy. As a consequence of our results,
we answer a question implicitly posed in [13]: Given that synchronous systems are ‘more synchronous’ than
the perfect failure detector P, what is the ‘gap in synchronism’ between P and synchronous systems? We
answer this question in Sect. 8.

3 Definitions

This section provides the formal framework and definitions used in the rest of the paper.
We first specify our system model. It is based on the asynchronous system model in [22], but differs from

it in two respects: (1) each process has access to a failure detector, and (2) messages sent are only guaranteed
to be delivered if both the sender and the receiver are correct. The same formalism can also be used to model
a system in which processes do not have access to failure detectors by having the failure detectors return
no information. In Sect. 3.2, we define four popular failure detectors, first introduced in [11]. Subsequently,
our fairness constraints are presented in Sect. 3.3 and used in Sect. 3.4 to specify fairness-based partially
synchronous system models. Subsequently, these fairness-based partially synchronous system models are
shown to be equivalent to the failure detectors from Sect. 3.2. Finally, in Sect. 7, we use the definitions from
Sect. 3.2 to specify the failure detectors from [6], and we use the definitions from Sect. 3.3, to specify their
‘equivalent’ fairness-based system models.

3.1 Asynchronous System Model

The asynchronous system model consists of a finite set of processes Π and a set of communication links that
allow each process to send and receive messages from each other process in the system.

Global time. We posit the existence of a discrete global time base whose range of values is the natural
numbers IN. Informally, global time simply counts the events that occur in the system; global time is not a
measure of the real-time duration between two events. That is, the real-time duration that elapses between
consecutive ticks of the global time may be arbitrary, but finite. In the remainder of this paper, ‘time’ will
refer to global time unless explicitly stated otherwise.

Faults and fault patterns. A process can fail only by crashing, which happens when the process
ceases execution without warning and never recovers. The processes that crash are said to be faulty and the
processes that do not crash are said to be correct (or non-faulty). A fault pattern is a function F that returns

decides. However, Ω, in isolation, is not sufficient to ensure the safety property: no two processes decide differently.
Therefore, given Ω, additional ‘synchronism’ is necessary to establish the safety property, and this has to be
obtained from other sources. In the case of shared memory systems, this additional ‘synchronism’ is provided by
read/write atomic registers; in the case of message passing systems, the additional ‘synchronism’ is provided either
by restricting the fault environment to majority-correct ones or by assuming access to a stronger failure detector
Σ. Failure detector Σ outputs a set of processes at each process. Any two sets (output at any times and by any
processes) intersect, and eventually every set output at correct processes consists only of correct processes.

9 The failure detector anti-Ωk outputs, at each process and each time, a set of n− k processes. Anti-Ωk guarantees
that there is a time after which some correct process is never output.
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the set of crashed processes at any given time. That is, F : IN→ 2Π ; F (t) denotes the set of processes that
are crashed at time t. Since crashed processes never recover, ∀t, t′ ∈ IN, t < t′ : F (t) ⊆ F (t′). We define
faulty(F ) = ∪∀t∈INF (t) and correct(F ) = Π − faulty(F ); that is, faulty(F ) denotes all the processes that
crash in F and correct(F ) denotes all the processes that are correct in F . A process that has not crashed at
time t is said to be live. We consider only fault patterns F in which at least one process is correct; that is,
correct(F ) 6= ∅; let the set of all such fault patterns be denoted F .

Failure detectors. A failure detector [11] is a distributed oracle that can be queried for (potentially
incorrect) information about crash faults in Π. Each process in Π is assumed to have access to a local failure
detector module which outputs a subset of Π currently suspected as having crashed.

Informally, a failure-detector history describes the output of a failure detector during an execution. For-
mally, a failure-detector history H is a function that maps Π×IN to 2Π ; H(p, t) is the set of processes output
by a failure detector to process p at time t. Let H denote the set of all possible failure-detector histories.

A failure detector D is defined as a function D : F → 2H − ∅; that is, D maps every fault pattern F to
a non-empty set of failure detector histories. In other words, D(F ) denotes the set of all possible histories
that may be output by D when the fault pattern is F .

Note that it is not necessary for algorithms to have access to failure detectors. In such cases, we assume
that the algorithms have access to a NULL failure detector which always outputs ∅.

Steps. Each process is modeled as a (possibly infinite) state machine. Certain states are identified as
initial states. Each transition of the state machine — or step of the process — takes as input the current state
of the process, a set consisting of zero or more messages from each other process (the “received” messages),
and the output from the failure detector; it produces as output a new state for the process and a set of
messages consisting of zero or more messages to each other process (the “sent” messages).10

It is important to note that the set of messages received by a process is not under the control of the
process. In other words, a process cannot ‘choose’ whether or not to receive messages. Messages that are
delivered to a process are stored in a receive buffer at the process. When the process takes the next atomic
step, all the messages in the receive buffer are said to have been received.

Configuration. A configuration of the system consists of a state for each process and the set of all
messages that have been sent but not yet received, called the in-transit messages (we assume each message
can be uniquely identified).

Runs. A run is defined with respect to a set of processes Π, a fault pattern F , and a history H of a failure
detector D (that is, H ∈ D(F )). A run of the system is an infinite sequence of alternating configurations
and steps of the form α = C0s1C1s2 . . .. The sequence must satisfy the following properties:

– C0 is an initial configuration (every process is in an initial state and no messages are in transit).
– For each i ≥ 1, the global time i is associated with si. For convenience in notation, we denote the global

time i associated with si by ti.
11

– For each i ≥ 1, si must be applicable to Ci−1, meaning:
• All the messages to be received during si are in transit in Ci−1.
• The failure detector output that is used as input to the transition indicated by si is H(pi, ti), where
pi is the process taking a step at si and ti is the time associated with si.

• The process executing si (say, pi) is live at time ti; that is, pi /∈ F (ti).
– For each i ≥ 1, Ci is the result of applying step si to Ci−1: the state of the process executing si changes

according to the transition function of the process, no other processes change state, the messages received
during si are removed from the set of in-transit messages, and the messages sent during si are added to
the set of in-transit messages.

– Every correct process takes an infinite number of steps. To model algorithms that terminate, a correct
process can enter a final state Sf in a run so that subsequently the process takes only dummy steps
(executes a no-op action) that do not send any messages and keep the process in the state Sf . A no-op

10 A detailed discussion of the various definitions of an atomic step follows in Sect.8.
11 A consequence of this property is that for all finite intervals of time, every process in Π executes only a finite

number of steps. This property is ensures that “Zeno behavior” is prohibited in a valid run; that is, processes are
not permitted to accelerate such that they execute an infinite number of steps in finite time.
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action is enabled only when no other action is enabled at the process. Recall that other actions may
become enabled when the process receives messages. Therefore, if a process takes a dummy step, then
it implies that no other action was enabled at the process despite receiving a (possibly empty) set of
messages.

– Every message that is sent from (say) process i to (say) process j is guaranteed to be received by i iff both
i and j are non-faulty. This assumption implies the following: (a) process crashes can never partition the
system, and (b) all the messages sent by i that are in transit when i crashes may be dropped. If process
i crashes at time t while a set of messages M , sent by i, are in transit at time t, then messages in M
may or may not be delivered.

3.2 Failure Detectors

As mentioned previously, failure detectors can be characterized by the restrictions on their histories for
various fault patterns. Failure detectors are classified into various classes based on certain restrictions on
their histories. These restrictions are specified by two abstract properties: completeness and accuracy. The
original definition of failure detectors [11] considers two completeness properties Weak Completeness and
Strong Completeness. However, [11] shows that under all-to-all communication, weak completeness can be
transformed to strong completeness while preserving accuracy. Therefore, we consider only strong com-
pleteness, which states that eventually every faulty process is permanently suspected by every correct process;
that is, a failure detector D satisfies strong completeness iff ∀F ∈ F ,∀H ∈ D(F ),∃t ∈ IN : ∀t′ > t, ∀i ∈
faulty(F ),∀j ∈ correct(F ) : i ∈ H(j, t′).

There are four accuracy properties specified for the canonical failure detector classes in [11]: Strong
Accuracy, Weak Accuracy, Eventually Strong Accuracy, and Eventually Weak Accuracy.

– Strong Accuracy states that no process is suspected before it crashes; that is, ∀F ∈ F ,∀H ∈ D(F ),∀t ∈
IN,∀i, j ∈ Π − F (t) :: i /∈ H(j, t).

– Weak Accuracy states that some correct process is never suspected; that is, ∀F ∈ F ,∀H ∈ D(F ),∃i ∈
correct(F ),∀t ∈ IN,∀j ∈ Π − F (t) :: i /∈ H(j, t).

– Eventual Strong Accuracy states that correct processes are eventually never suspected by any correct
process; that is, ∀F ∈ F ,∀H ∈ D(F ),∀i, j ∈ correct(F ),∃t ∈ IN : ∀t′ > t : i /∈ H(j, t′).

– Eventual Weak Accuracy states that some correct process eventually is never suspected by any correct
process; that is, ∀F ∈ F ,∀H ∈ D(F ),∃i ∈ correct(F ),∀j ∈ correct(F ),∃t ∈ IN : ∀t′ > t : i /∈ H(j, t′).

The completeness and accuracy properties stated above define four failure detector classes [11]:

– The Perfect failure detector (P) satisfies strong completeness and strong accuracy.
– The Strong failure detector (S) satisfies strong completeness and weak accuracy.
– The Eventually Perfect failure detector (3P) satisfies strong completeness and eventual strong accuracy.
– The Eventually Strong failure detector (3S) satisfies strong completeness and eventual weak accuracy.

Alternate Definitions. In order to facilitate an understanding of how these failure detectors encapsulate
fairness, we propose alternate (but equivalent) definitions of these failure detector classes. These alternate
definitions are based on the definition of a distinguished process. Informally, a process i is said to be distin-
guished if i is never suspected until it crashes, and after crashing, i is eventually suspected by all live processes
and remains suspected forever thereafter. Similarly, a process i is said to be eventually distinguished if there
is a time t (which may or may not be known) after which i is distinguished. In other words, an eventually
distinguished process may be falsely suspected before (some potentially unknown) time t. Note that every
distinguished process is also an eventually distinguished process where the time t is 0.

Formally, a process i is said to be distinguished with respect to a failure detector D if, ∀F ∈ F ,∀H ∈ D(F ),
the following properties are satisfied:

– ∀t ∈ IN,∀j ∈ Π − F (t) :: i /∈ F (t)⇒ i /∈ H(j, t).
– ∃t ∈ IN :: (i ∈ F (t))⇒ (∀t′ ≥ t, ∀q ∈ Π − F (t′), i ∈ H(q, t′))
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Similarly, a process i is said to be eventually distinguished with respect to a failure detector D if, ∀F ∈
F ,∀H ∈ D(F ), the following properties are satisfied:

– ∀j ∈ correct(F ),∃t ∈ IN : ∀t′ > t : i /∈ F (t′)⇒ i /∈ H(j, t′).
– ∃t ∈ IN :: (i ∈ F (t))⇒ (∀t′ ≥ t,∀q ∈ Π − F (t′), i ∈ H(q, t′))

Based on this definition of a distinguished process (and the auxiliary definition of an eventually distin-
guished process), we redefine the four failure detectors classes as follows:

– P is a failure detector for which every process is distinguished.
– S is a failure detector for which some correct process is distinguished, and all faulty processes are

eventually distinguished.
– 3P is a failure detector for which every process is eventually distinguished.
– 3S is a failure detector for which some correct process is eventually distinguished, and all faulty processes

are eventually distinguished.

Note that in all the four failure detector classes, faulty processes are eventually distinguished. This
corresponds to strong completeness [11] which states that there exists a time after which every crashed
process is permanently suspected by all correct processes.

3.3 Fairness Constraints

We claim that Chandra-Toueg failure detectors encapsulate fairness guarantees of the underlying system.
Fairness is of two kinds: computational and communicational. Computational fairness restricts the number
of steps executed by processes relative to each other. Communicational fairness restricts the number of steps
executed by the recipient of a message while that message is in transit.

Computational Fairness. A common specification for computational fairness is bounded relative process
speeds [17]. A system is said to have a bound Φ on relative process speeds if the following holds. In each run
α of the system, and the associated fault pattern F , for each process i, in each time interval of the form
[t1, t2] in which process i takes Φ + 1 steps, all the processes not in F (t2) are guaranteed to take at least 1
step. Note that this fairness property is symmetric in the following sense. In a system where relative process
speeds are bounded by Φ, let i and j be two processes. In any duration where process i takes Φ + 1 steps,
if process j is live during the entire duration, then j is guaranteed to take at least one step. This behavior
holds even when the roles of i and j are reversed. That is, in any duration where j takes Φ + 1 steps, if i
is live during the entire duration, then i is guaranteed to take at least one step. However, it is possible to
define computational fairness properties that are asymmetric.

We next give our definition of computational fairness. A process i is said to be k-proc-fair (where k is a
non-negative integer) in a run α, if, for all processes j ∈ Π, in every segment of α in which j takes exactly
k+ 1 steps, either (1) i takes at least one step, or (2) i has crashed before the end of the segment. Similarly,
a process i is said to be eventually k-proc-fair in α, if, for all processes j ∈ Π, there exists a (potentially
unknown) time tgst such that, in all execution segments of α that begin after tgst in which j takes exactly
k + 1 steps, either (1) i takes at least one step, or (2) i has crashed before the end of the segment. That is,
i is k-proc-fair in α from time tgst onwards.

Note that i being k-proc-fair with respect to j does not imply j being k-proc-fair with respect to i. As such,
proc-fairness is an asymmetric fairness property. This is an important distinction between computational
fairness and bounded relative process speeds defined in [18, 17]. Bounded relative process speeds may be
viewed as a special case where every process is (eventually) k-proc-fair.

Communicational Fairness. Constraining communication delay in terms of fairness is not straightforward.
For a process i to satisfy communicational fairness, it is necessary that i not take ‘too many steps’ while a
message m is en route to i. However, there is one exception: if the sender of m crashes while m is in transit
to i, then i can take an arbitrary number of steps before m is delivered. In fact, m may even be dropped.

8



We capture the above intuition through the following definition for a com-fair process. A process i is said
to be d-com-fair (where d is a non-negative integer) in a run α, if, for all processes j ∈ Π, for each message
m sent from i to j in α, during the segment of α that starts from the step in which m is sent, contains
exactly d steps by j, and ends with a step by j, either (1) m is received by j, or (2) i has crashed before the
end of the segment.

Similarly, a process i is said to be eventually d-com-fair (where d is a non-negative integer) in α if, there
exists a (potentially unknown) time tgst such that, for all processes j ∈ Π, for each message m sent from i to
j in α after time tgst, during the segment of α that starts from the step in which m is sent, contains exactly
d steps by j, and ends with a step by j, either (1) m is received by j, or (2) i has crashed before the end of
the segment. That is, i is d-com-fair from time tgst onwards.

In traditional partially synchronous models [18, 17] the bounds on message delay are measured in real-
time units and the de facto upper bound of one step per unit time on process speeds imposes an upper bound
on the number of steps taken by both the sender and the recipient of the message. In contrast, we measure
the bounds on communicational fairness as the number of steps taken by the recipient, and not the sender.
The reason for such discrepancy is the following. Since these traditional models assume that relative process
speeds are bounded, if some live process takes a bounded number of steps while a message is in transit, then
all processes take a bounded number of steps while that message is in transit. Hence, asserting the existence
of a bound on the number of steps by the sender is equivalent to asserting the existence of a bound on the
number of steps by the recipient in the same time interval. In our case, since computational fairness is not
a symmetric property, a bound on the number of steps by the sender need not translate to a bound on the
number of steps by the receiver in the same time interval. Consequently, we denominate communicational
fairness as the number of steps taken by the recipient.

Furthermore, we bound the number of steps taken by the recipient only while the sender is live for the
following reason. While the sender is not crashed, it can successfully maintain an operational communication
link with the recipient, and the link can ensure that messages are delivered before the recipient takes ‘too
many steps’. However, if the sender crashes, the link is no longer guaranteed to stay operational, and no
guarantees can be provided on message delay and delivery.

3.4 Fairness-Based Partially Synchronous System Models

We present four partially synchronous system models that represent the fairness encapsulated by the four
Chandra-Toueg failure detectors specified in Sect. 3.2.

1. All Fair (AF) is an asynchronous system model where, in every run, all processes are both k-proc-fair
and d-com-fair, for known k and d.

2. Some Fair (SF) is an asynchronous system model where, in every run, some correct process is both
k-proc-fair and d-com-fair, for known k and d.

3. Eventually All Fair (3AF) is an asynchronous system model where, in every run, all the processes are
both eventually k-proc-fair and eventually d-com-fair, for known k and d.

4. Eventually Some Fair (3SF) is an asynchronous system model where, in every run, some correct process
is both eventually k-proc-fair and eventually d-com-fair, for known k and d.

Next we describe the methodology used to prove our results.

4 Methodology

We claim that the Chandra-Toueg oracles encapsulate fairness (and not real-time) properties of the under-
lying system. We will show that the amount of fairness encapsulated by these oracles is specified by the
aforedescribed fairness-based system models. In a precise sense, AF , SF , 3AF , and 3SF specify the exact
amount of fairness encapsulated by P, S, 3P, and 3S, respectively. Alternatively, it can be said that AF ,
SF , 3AF , and 3SF are the ‘weakest’ system models to implement P, S, 3P, and 3S, respectively.
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The methodology used to establish the above equivalence is as follows. First, we present a construction
called a scheduler (described in Sect. 5) that queries a Chandra-Toueg oracle in an otherwise asynchronous
system to schedule distributed applications such that each process executes its application steps ‘fairly’ with
respect to other processes (and messages). The fairness properties guaranteed by the scheduler depend on
the available failure detector. By employing P, S, 3P, or 3S, the scheduler provides fairness guarantees
specified by AF , SF , 3AF , or 3SF , respectively. This shows that the failure detectors encapsulate at
least as much fairness as is specified in the corresponding fairness-based system models. Next, we present
an algorithm (described in Sect. 6) which implements a Chandra-Toueg oracle on top of these fairness-based
systems. When this algorithm is deployed in AF , SF , 3AF , or 3SF , it implements P, S, 3P, or 3S,
respectively. Thus, we show that these failure detectors encapsulate no more guarantees on fairness than
what is provided by the corresponding fairness-based systems.

5 Extracting Fairness from Chandra-Toueg Failure Detectors

In this section, we present a distributed scheduler that ‘extracts’ the fairness encapsulated by the Chandra-
Toueg failure detectors. The scheduler is assumed to serve a distributed application; it determines the times
at which the application modules at each process execute their respective steps such that appropriate fairness
constraints on the relative ordering of steps and message receipts are maintained.

5.1 Interface Between Scheduler and Application

The scheduler interacts with the application through executeAPP (), receiveAPP (), and sendAPP () inter-
faces (specified in Alg. 1.2). The scheduler enables the application to take a step by invoking executeAPP()
and in response, the application takes a single atomic step. If multiple actions of the application are enabled
to be executed, then the scheduler is assumed to make a non-deterministic choice among the enabled actions
subject to the constraint of weak fairness (which states that a continuously enabled action is eventually
executed).

The application receives messages sent by other processes through the receiveAPP() interface. The sched-
uler at each process i takes all the messages destined for the application module at i and stores them locally
in a receive buffer. When the application takes a step, the scheduler delivers the messages in the receive
buffer to the application through receiveAPP (). Note that the application does not have control over the in-
vocation of receiveAPP(); this is performed by the scheduler to ensure that the application receives messages
‘on time’.

The application sends messages via the sendAPP () interface. While taking a step, if the application at
process i invokes sendAPP (), the scheduler at i stores all the messages that the application wants to send to
all the processes in a local send buffer. The scheduler at i then sends the messages to destination processes
where they are stored in the receive buffers of the destination processes. These messages are then received by
the respective recipient processes when the scheduler modules at the latter processes invoke receiveAPP ().

5.2 Fairness Guarantees Provided by the Scheduler

The algorithm presented is a universal construction for the Chandra-Toueg hierarchy in the sense that
depending on the failure detector used by the algorithm, the appropriate fairness guarantees are provided
by the distributed scheduler to the application being scheduled. For example, if the application module at
(a live) process (say) i is guaranteed to be scheduled to take at least one step in all durations where other
processes (that are live in that duration) have taken at least k+1 steps, then the scheduler is said to provide
k-proc-fairness for process i. Similarly, while a message m is is in transit to process i, if the application
module at i is guaranteed to be scheduled to take fewer than d steps and guaranteed to receive m within d
steps, then the scheduler is said to provide d-com-fairness for process i.

The local scheduler module is always in one of two states: waiting and active. When the scheduler
module is waiting, the associated application module is not permitted to take steps. Upon becoming active,
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the scheduler module permits the associated application module to execute a single enabled step; we assume
that the application at each process always has some enabled step that it can take. After the application
takes exactly one step, the scheduler goes back to waiting. Additionally, the distributed scheduler ‘intercepts’
and forwards all the communication among the application modules.

The properties to be satisfied by the distributed scheduler are local progress and fairness. Local progress
states that every correct process must be scheduled to execute its application steps infinitely often, regardless
of process crashes in the system. Fairness properties are as follows.

– If the distributed scheduler uses P, then the scheduler provides the AF system model guarantees to the
scheduled application.

– If the distributed scheduler uses S, then the scheduler provides the SF system model guarantees to the
scheduled application.

– If the distributed scheduler uses 3P, then the scheduler provides the 3AF system model guarantees to
the scheduled application.

– If the distributed scheduler uses 3S, then the scheduler provides the 3SF system model guarantees to
the scheduled application.

5.3 Algorithm Description

The algorithm in Alg. 1.1 and 1.2 implements a distributed scheduler with dynamic heights and permits.
Alg. 1.1 shows the actions of the scheduler and Alg. 1.2 shows the interface between the scheduler and the
scheduled application. The idea of dynamic heights (also called priorities) and permits (also called forks)
is borrowed from the algorithms to solve the dining philosophers problem in [12] and [36]. Each process is
assigned a static unique id and all the ids are known to all the processes in the system.

In Alg. 1.1 each process i has the following variables: si.state which determines if the process is waiting
or active. The height of a process is stored in the variable si.ht which is initially 0. Each process i also uses
sequence numbers to tag its message requests and the sequence number is stored in the variable si.seq. For
each other process j in the system, i maintains the variables: (a) si.permitj to determine if the permit shared
with j is currently held by i, (b) si.reqj to determine if the request token (or simply token) to request a
permit from j is currently at i, (c) si.htj which stores the last received value of j’s height (in permits and
request messages), and (d) si.maxAckj which stores the application-message request with latest sequence
number for which i has received application messages from j.

Every pair of processes i and j share a permit and a token. Between every pair of processes, initially,
permits are held by the higher-id process and the tokens are held by the lower-id process. All processes
start in the waiting state. For a waiting process to become active, it must collect all its shared permits. A
waiting process requests missing permits in Action 1. Upon receiving such a request in Action 2, the process
determines if the request should be honored based on the following condition: if the process is waiting, holds
the shared permit, and the requesting process has greater height (or equal height and higher process-id),
then the process relinquishes the permit. Otherwise the process simply holds the token and defers sending
the permit if the permit is present.

Upon receiving a permit in Action 3, the process again determines if the permit should be kept/deferred
or sent based on the same condition mentioned previously.

Once a waiting process receives all shared permits from processes not suspected by the failure detector
D, the process becomes active in Action 4. When a process i becomes active, it solicits any messages for
which the active process is the recipient by sending an application-message request to all the processes in
the system. Each such message contains a unique sequence number si.seq. Process i tracks the receipt of
responses to its application-message requests by storing the largest sequence number for which application
messages have been received in the variable si.maxAckj .

Application-message requests are received in Action 5. When a process j receives such a request from a
process i with a sequence number num, process j sends the contents of its local send buffer for process i in
response with the same sequence number num. Process i receives this response to its request in Action 6,
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enum {waiting, active} : si.state ← waiting State variable is initially set to waiting
integer si.ht ← 0 The height of process i
integer si.seq ← 0 Generates a new sequence number to solicit messages from other processes
∀j ∈ Π − {i} :
boolean si.permitj ← (i.id > j.id) Process with higher id holds the shared permit
boolean si.reqj ← (i.id < j.id) Process with lower id holds the shared request token
integer si.htj ← 0 Process i’s view of the height of process j
integer si.maxAckj ← 0 The highest sequence number among the messages received from j
set si.send bufferj ← ∅ The send buffer through which application at i sends messages to j
set si.receive bufferj ← ∅ The receive buffer from which application at i receives messages from j

1 : {si.state = waiting} −→ Action 1
2 : ∀j ∈ Π − {i} where si.reqj ∧ ¬si.permitj do Request permit
3 : send 〈request, si.ht〉 to sj ; si.reqj ← false

4 : {upon receive 〈request, ht〉 from sj} −→ Action 2
5 : si.reqj ← true Send permit if si is waiting
6 : si.htj ← ht and sj has higher priority
7 : if (si.permitj ∧ (si.state = waiting) ∧ ((ht > si.ht) ∨ ((ht = si.ht) ∧ (i < j)))
8 : send 〈permit, si.ht〉 to sj ; si.permitj ← false

9 : {upon receive 〈permit, ht〉 from sj} −→ Action 3
10 : si.permit ← true
11 : si.htj ← ht
12 : if (si.reqj ∧ (si.state = waiting) ∧ ((ht > si.ht) ∨ ((ht = si.ht) ∧ (i < j))) Send permit if si is waiting
13 : send 〈permit, si.ht〉 to sj ; si.permitj ← false and sj has higher priority

14 : {(si.state = waiting) ∧ (∀j /∈ D \ {i} :: si.permitj)} −→ Action 4 (Note: D is queried)
15 : si.state ← active Active upon holding permits from trusted processes
16 : increment si.seq by 1 Generate a new seq. no. to tag a request message
17 : foreach j in Π − {i}
18 : send 〈getMsg, si.seq〉 to sj Send a request for messages to all processes

19 : {upon receive 〈getMsg, num〉 from sj} −→ Action 5
20 : S ← si.send bufferj Received a request for msgs
21 : si.send bufferj ← ∅
22 : send 〈S, num〉 to sj Send the contents of the local send buffer

23 : {(upon receive 〈S′, num〉 from sj)} −→ Action 6
24 : si.receive bufferj ← si.receive bufferj ∪ S′ Add to local receive buffer
25 : si.maxAckj ← max(num, si.maxAckj) Update max. ack receive so far.

26 : {(si.state = active) ∧ (∀j ∈ Π − {i} :: ((si.maxAckj = si.seq) ∨ (j ∈ D)))} −→ Action 7 (Note: D is queried)
27 : executeAPP () Execute an application step; executeAPP () is specified in Alg. 1.2
28 : si.ht ← min(∀j ∈ Π − {i} :: si.htj , si.ht)− 1
29 : ∀j ∈ Π − {i} where (si.permitj) Reduce height below all the neighbors whose heights are known.
30 : send 〈permit, si.ht〉 to sj ; si.permitj ← false Send all held permits
31 : si.state ← waiting Exit the active state after executing an application step

Alg. 1.1. Actions for scheduler at process i.
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procedure executeAPP ()
execute an enabled application step where
receiveAPP () delivers messages to the application
application step invokes sendAPP (m, j) to send message m to process j

procedure receiveAPP ()
returnV alue ← ∪∀j∈Π−{i}{(si.receive bufferj , j)}
∀j ∈ Π − {i} do si.receive bufferj ← ∅
return returnV alue

procedure sendAPP (m, j)
si.send bufferj ← si.send bufferj ∪ {m}

Alg. 1.2. Interaction between the scheduler and the application at process i.

process i takes all the received messages and adds them its local receive buffer; it also updates si.maxAckj if
num is the largest sequence number for which i has received application messages from j.

If the active process i has received application messages for its latest application-message request from all
the processes it doesn’t suspect, then Action 7 is enabled at i. In Action 7, i invokes executeAPP () to execute
an application step before transiting to the waiting state. When the process executes an application step,
the application is given all the messages in the local receive buffer via the receiveAPP () interface described
in Alg. 1.2, and the application step sends messages by invoking sendAPP () described in Alg. 1.2 which
simply adds the message to the local send buffer. These messages are not sent until an application-message
request is received from the scheduler module at the recipient of these messages.

Eventually, the process exits its active state by reducing its height below all processes (whose shared
permits it holds), sends all the permits away and transits to waiting in Action 7.

5.4 Proof of correctness

In this section we prove that the distributed scheduler in Alg. 1.1 satisfies the local progress and fairness
properties specified in Sect. 5. For the purpose of the proof, consider an arbitrary run α of Alg. 1.1.

Lost request tokens or permits can prevent progress, while duplicated request tokens or permits can
compromise fairness. First we prove that every pair of processes share a unique permit and a unique request
token. We use the following notation to denote that a message of type y is in transit from process i to j:
My
i→j .

Lemma 1. For all configurations in α, there exists exactly one request token between each pair of live
processes; that is, for all pairs of processes (i, j), exactly one of the following four expressions is true: (1)
si.reqj = true, (2) sj .reqi = true, (3) Mrequest

i→j = true, and (4) Mrequest
j→i = true.

Proof. For each pair of processes, the initialization code creates a unique request token at the lower-priority
process. Since communication channels are reliable, this token is neither lost nor duplicated while in transit.
Only Actions 1 and 2 can modify the token variables. No token is lost, because every token received is locally
stored (Action 2), and no token is locally removed unless it is sent (Action 1). No token is duplicated, because
every token sent is locally removed, and no absent token is ever sent (Action 1). Thus, token uniqueness is
preserved. ut

Lemma 2. For all configurations in α, there exists exactly one permit between each pair of live processes; that
is, for all pairs of processes (i, j), exactly one of the following four expressions is true: (1) si.permitj = true,

(2) sj .permiti = true, (3) Mpermit
i→j = true, and (4) Mpermit

j→i = true.

Proof. For each pair of processes, the initialization code creates a unique permit at the higher-priority process.
Since communication channels are reliable, this permit is neither lost nor duplicated while in transit. Only
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Actions 2, 3, and 7 modify the permit variables. No permit is lost, because every permit received is locally
stored (Action 3), and no permit is locally removed unless it is sent (Actions 2, 3, & 7). No permit is
duplicated, because every permit sent is locally removed, and no absent permit is ever sent (Actions 2, 3, &
7). Thus, permit uniqueness is preserved. ut

In order to prove local progress, we are required to show that every correct process is guaranteed to
take application steps infinitely many times. This proof is established in two steps. Note that a process can
execute its application action only when it is active. So, in the first step (Lemmas 3 and 4), we show that a
correct process is active only for a finite duration. In the second step (Lemma 5 and Theorem 1), given that
a correct process is active only for a finite time, we establish that every correct waiting process eventually
becomes active. Since a correct process starts waiting when it stops being active, it follows that a correct
process becomes active infinitely many times, and therefore takes application steps infinitely many times.

Lemma 3. For all configurations in α, for all pairs of processes (i, j) where i 6= j, si.maxAckj never exceeds
si.seq; that is, ∀i, j ∈ Π : i 6= j : si.maxAckj ≤ si.seq.

Proof. Initially, si.seq = si.maxAckj = 0, therefore the lemma is true initially. Note that the only action that
changes the value of si.seq is Action 4, and Action 4 increments the value by 1. Therefore, if the lemma was
true before i executed Action 4, then the lemma is true upon executing Action 4 as well.

Note that the only action that changes the value of si.maxAckj is Action 6. If Action 6 increases the value
of si.maxAckj , then the increased value num is received by i in a message 〈msgSet′, num〉 from j. But note
that j sends 〈msgSet′, num〉 to i only upon receiving 〈getMsg, num〉 from i (Action 5). But in the message
〈getMsg, num〉 sent by i to j (at time t′), the value of num (in line 25, Action 6, Alg. 1.1) is si.seq at time
t′. Inspection of the algorithm reveals that si.seq is non-decreasing. Therefore, the new si.maxAckj is either
the current or a previous value of si.seq. Therefore, if the lemma was true before i executed Action 4, then
the lemma is true upon executing Action 4 as well.

Thus, the lemma is true initially, and the lemma is true after executing any action that changes the
values of si.seq and si.MaxAckj ; thus proved. ut

Now we are ready to show that all correct processes are active only for finite durations.

Lemma 4. Let C be a configuration in α at time t in which a process i is active. Then in some configuration
C ′ at time t′ > t, either i is crashed or i is waiting.

Proof. Given that process i is active in configuration C at time t, let the system be in configuration C ′′ at
time t′′ ≤ t such that i is active in all the configurations in the interval [t′′, t] and i is not active at time
t′′ − 1. In other words, process i becomes active in the step that results in configuration C ′′ at time t′′ (in
Action 4), and i remains active through time t ≥ t′′ in configuration C. If i is faulty, then i crashes at some
time t′ > t, thus satisfying the lemma.

However, if i is correct, then to prove the lemma we have to show that there exists a time after t at
which i is waiting. Let the value of si.seq in C ′′ be num. From the code in Alg. 1.1, we see that the value
of si.seq changes from num only in Action 4, which is enabled only when i is waiting. Therefore, the value
of si.seq does not change from num until i transits from active to waiting. Also, from Action 4, we see that
i sends the message 〈getMsg, num〉 to all other processes in the step that i takes immediately preceding
C ′′. For each correct process j, j receives the message 〈getMsg, num〉 from i, executes Action 5, and sends
〈msgSet, num〉 to i. The message 〈msgSet, num〉 is eventually received by i (since i is still live) in Action 6
at time (say) trj > t′′, and i sets the value of si.maxAckj to num.

We know from Lemma 3 that si.maxAckj is always at most si.seq, and we know that num = si.seq =
si.maxAckj at time trj . From the code in Alg. 1.1, we see that the value of si.maxAckj is non-decreasing, and
we have already established that the value of si.seq does not change until i transits from active to waiting.
Therefore, from time trj until i transits to waiting, si.maxAckj = si.seq.

For each faulty process j, one the following is true: (1) eventually si.maxAckj = si.seq and remains so
until i transits to waiting, or (2) j crashes and by strong completeness, j is eventually and permanently
suspected by the failure detector D.
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Therefore, eventually for all processes j ∈ Π − {i}, either si.maxAckj = si.seq or j is suspected by D.
That is, eventually, Action 7 is continuously enabled at i until Action 7 is executed, and after Action 7 is
executed, i starts waiting. Thus, we showed that if a process i is active in configuration C at time t, then at
some future configuration C ′ at time t′ > t either i is crashed or i is waiting. ut

In order to prove progress, we need to show that every waiting process eventually becomes active. For
this purpose, we introduce some definitions to construct a metric function on configurations of α. First, we
measure the priority distance between any two processes i and j in a configuration as:

dist(i, j) =


0, if (si.ht < sj .ht)
si.ht− sj .ht. if ((si.ht ≥ sj .ht)

∧ (i < j))
si.ht− sj .ht + 1, if ((si.ht ≥ sj .ht)

∧ (i > j))

For any pair of processes i and j, in some configuration where j is waiting, suppose that dist(i, j) = d.
While j remains waiting, sj .ht remains unchanged. Also, recall from Action 7 that each process reduces its
height (below all the processes whose shared permits it holds) when exiting the active state. Consequently,
d is an upper bound on the maximum number of times that process i can overtake process j and become
active before either j becomes active or si.ht < sj .ht. Now we define a metric function M : Π → IN for each
process j ∈ Π as follows:

M(j) =
∑

∀i∈Π:i 6=j

dist(i, j)

Note that M is bounded below by 0, and that M(j) = 0 iff j currently has the highest priority value
among all processes in Π. In general, the value of M(j) depends only on processes that currently have a
higher priority than j. This is because dist(i, j) = 0 for any process i with lower height than j or equal height
as j but lower process id. If M(j) = b, then b is an upper bound on how many times any higher-priority
process can become active before either j becomes active or j is the process with highest priority.

Also note that the metric value of each process in a given configuration is unique: (i 6= j)⇒M(i) 6= M(j).
Moreover, M(i) < M(j)⇔ ((si.ht < sj .ht)∨ ((si.ht = sj .ht)∧ (i < j)). These properties follow from the fact
that priorities are totally ordered.

Finally, the metric value M(j) never increases while process j is waiting. M(j) can only increase by
reducing the height sj .ht in Action 7 while exiting the active state. Importantly, if j is the process with the
largest height in the system, this change in relative priority actually causes the metric values of all other
processes to decrease.

We now state and prove the following helper lemma for progress:

Lemma 5. Let C be any configuration in α with at least one live waiting process. Let j be the live waiting
process in C with minimal metric. Then there is a later configuration C ′ in α such that: (1) j is active in
C ′, or (2) j is crashed in C ′, or (3) some other process i is live and waiting and M(i) < M(j) in C ′.

Proof. Assume in contradiction that in every configuration after C, j is live and waiting and has the minimal
metric. We will show that eventually j is active, a contradiction.

Let C ′′ be a configuration after C in α in which all faulty processes have crashed and by strong complete-
ness of D, all such crashed processes are permanently suspected. After C ′′, j only needs to collect permits
from correct processes. We show that j succeeds in collecting and keeping all these permits, and thus, j will
become active.

Let i be any correct process other than j. First we show that j will not lose the permit it holds with i. By
hypothesis, j is waiting and has higher priority than any correct process from configuration C onwards (recall
that M(j) never increases while j is waiting; hence, j will continue to be the highest priority process until
it becomes active), so any request token received by j in Action 2 will be deferred. Note that it is possible
for j to receive an ‘old’ request token from i which has higher priority value, thereby causing j to give up its
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shared permit. However, j will send the request token to i in Action 1 right after sending the permit, and
this time i will have to return the permit to j because j has higher priority. Thereafter, eventually, j defers
the request token from i until j becomes active.

Now we show that j will eventually acquire the permit shared with i. By Lemma 2, j shares a unique
request token with i. All permits that were in transit to j when j started waiting are delivered in finite time.
For any missing permits, if j holds the request token, then j will eventually send the corresponding token.

However, if j has neither the request token nor the shared permit upon transiting to waiting, then
eventually the shared permit and the request token are either at i or at j. We now show that eventually j
receives either the request token or the shared permit. For the purposes of contradiction, suppose eventually
i holds both the permit and the request token permanently. If i is active, then i eventually starts waiting
(by Lemma 4) and sends the permit to j in Action 5. If i is waiting, then depending on the order in which
the request token and the permit arrived at i, process i executes either Action 2 or Action 3. Since priorities
are non-increasing, the priority encoded in the token and the permit received by i must be at least as high
as j’s current priority. We have already established that j has the highest priority in the system. Therefore,
in both Action 2 and Action 3, i sends the shared permit to j.

If j (eventually) receives the request token, then j sends this request token to i in Action 1. Recall that
by the hypothesis, j has higher priority than i; consequently, this permit request must be honored unless i is
currently active. In the latter case, we know from Lemma 4 that i eventually exits to be waiting; therefore,
the requested permit will be sent when i starts waiting in Action 5.

Thus, we conclude that if j remains waiting indefinitely, then j eventually suspects each faulty process
and eventually holds the shared permit with each correct process. By Line 14, the guard on Action 4 is
enabled. So j becomes active. ut

Thus, we see that a waiting correct process with the minimal metric eventually either becomes active or
no longer has the minimal metric in the system. Since the set of processes in the system is finite and fixed,
we conclude that eventually some waiting correct process (say) i with minimal metric becomes active and
takes an application step. As a result, i reduces its priority, and consequently, the metric values of all other
correct processes in the system decrease. Furthermore, when i transitions to waiting (again), it no longer has
the minimal metric in the system (assuming there are other correct processes in the system); that is, some
other correct process in the system has the minimal metric. Thus, by inductively applying this argument to
all correct processes, we see that every correct process takes infinitely many steps. We prove this result in
Theorem 1.

Theorem 1. Algorithm 1.1 satisfies local progress: every correct process takes infinitely many application
steps.

Proof. Note that to prove the theorem, it is sufficient to prove the following claim: For every k, every
configuration C of α, and every correct process j, if M(j) = k in C, then there is a later configuration in
which j is active. We prove this by a complete (strong) induction on metric values.

Base Case: k = 0. Suppose M(j) = 0 in configuration C. Since 0 is the smallest possible value that the
metric can have and j is correct, Lemma 5 implies that in some subsequent configuration C ′, either j is
active or there is another live waiting process i whose metric is smaller than j’s metric in C ′.

However, since j’s metric can never increase while j is waiting, and it is not possible for a process to have
a metric less than 0, no such live waiting process i exists. So, j eventually becomes active.

Inductive Case: k > 0. Suppose for every k′ < k, every configuration C of α, and every correct process
j, if M(j) = k′ in C, then there is a later configuration in which j is active. We must show that for every
configuration C and every correct process j, if M(j) = k in C, then there is a later configuration in which j
is active.

Let C be a configuration, and let j be a correct waiting process in C with M(j) = k. Suppose that k is the
minimal metric value among all correct waiting processes in C. Then Lemma 5 applies to j, so we conclude
that j eventually becomes active, or some correct process i with M(i) < M(j) starts waiting. Alternatively,
suppose that k is not the minimal metric value among all correct waiting processes in C. Then some (other)
correct waiting process i with M(i) < k already exists. Either way, we conclude that j eventually becomes
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active or the inductive hypothesis applies to some correct waiting process i with M(i) < k. In the latter
case, process i becomes active. By Lemma 4, i eventually exits the active state by executing Action 5, which
thereby lowers the height si.ht and decreases dist(i, j) by at least 1. Recall that while j remains waiting,
M(j) does not increase. Thus, any decrease in dist(i, j) will cause the metric value of M(j) to become less
than k. Since j is now a correct waiting process with M(j) < k, the inductive hypothesis applies directly to
j. Thus, we conclude that j eventually becomes active.

By Lemma 4 and Action 7, we know that every time j becomes active, it executes an application step, and
j eventually exits. Upon exiting j starts waiting again. Thus, we show that Alg. 1.1 satisfies local progress
by complete induction. ut

To establish the proof for computational fairness, we make use of the notion of distinguished processes.
Recall that a distinguished process is never suspected until it crashes and is suspected forever thereafter. An
informal argument for computational fairness of distinguished processes is as follows. Given a distinguished
process i, no process in the system suspects i until i crashes. Therefore, when any other process j becomes
active while i is live, j is guaranteed to hold the permit it shares with i. Therefore, when j transits back to
waiting, j is guaranteed to reduce its height below i’s height. Since i is not suspected until i crashes, as long
as i does not crash, i is guaranteed to become active before j. We formalize this argument in Theorem 2 and
its proof.

Theorem 2. In Alg. 1.1, each distinguished (respectively, eventually distinguished) process is 2-proc-fair
(respectively, eventually 2-proc-fair).12

Proof. Consider an arbitrary run α and let i be any process that is eventually distinguished in α. Let the
earliest time after which i is distinguished be ti. That is, from time ti onwards, if i is live at time t̂ ≥ ti, then
i is trusted by the failure detector (at all live processes) at time t̂, and on the other hand, if i is crashed at
time t̂ ≥ ti, then for some t̃ ≥ t̂, i is suspected by the failure detector (at all live processes) in the interval
[t̃,∞). We must show that for all j, in every interval starting after ti in which j takes three application steps,
either i takes at least one application step or i is crashed.

Consider a process j 6= i that takes three application steps after ti, say at times t, t′, and t′′ and suppose
that i is live through t′′. We must show that i takes an application step at least once between t and t′′. Since
i is a distinguished process from time ti onwards, the failure detector D at j never suspects i between ti and
t′′. Therefore, j holds the shared permit between i and j at times t, t′, and t′′.

At time t, let the height of i be hti and the height of j be htj . There are two cases to consider here:
Case 1. Let htj < hti. Note that j holds the permit it shares with i. Eventually, j sends the permit to i in

Action 7, and j includes its height htj in the permit. When i receives this permit htj < hti; therefore, i does
not relinquish the permit until i becomes active. Since j becomes active at time t′ (and takes an application
step) and j does not suspect i, j holds the shared permit at time t′. Since i sends the permit only after
i becomes active, i is guaranteed to become active before time t′ (and take its application step); thus the
theorem is satisfied.

Case 2. Let htj > hti. Note that j holds the shared permit. Eventually, j sends the permit to i in Action
7. We know that j takes an application step at time t′ and therefore is active at time t′. Therefore, j must
hold the permit it shares with i at time t′. That is, i sends the permit to j in the interval (t, t′).

Note that i sends the permit to j only in Actions 2 and 7. If i executes Action 7 in (t, t′), then i was active
in the interval (t, t′) and the theorem is satisfied. On the other hand, if i sends the permit to j in Action 2,
then i is not active in the interval (t, t′). Also, i includes its height hti in the permit. Therefore, when j is
active at time t′, the value of sj .hti is hti. When j transits to waiting, it reduces its height to ht′j < hti and
includes this height in the permit sent to i. We know that j takes an application step again at time t′′, and
so j is active again at time t′′. Therefore, j must hold the permit it shares with i at time t′′. That is, i sends
the permit to j in the interval (t′, t′′). However, since ht′j < hti, i does not send the permit to j in Action

12 In the special case where all the processes are (eventually) distinguished, then a careful analysis shows that all
correct distinguished processes are, in fact, (eventually) 1-proc-fair. We omit this here because, for the purposes of
our results, it is sufficient to show that (eventually) distinguished processes are (eventually) 2-proc-fair.
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2 in the interval (t′, t′′). The only other action in which i sends the permit to j is Action 7; that is, i must
have been active at some time in the interval (t′, t′′), and hence, i must have taken an application step in
the interval (t′, t′′).

In other words, i is eventually 2-proc-fair. However, if ti = 0, then i is 2-proc-fair in the run α; that is, if
i is a distinguished process, then i is 2-proc-fair. Thus, we have shown that every distinguished (respectively,
eventually distinguished) process is 2-proc-fair (respectively, eventually 2-proc-fair). ut

We use the notion of distinguished processes to establish communicational fairness as well. The intuitive
argument for communicational fairness is as follows. Given a distinguished process i, no process in the system
suspects i until i crashes. Therefore, while (1) an application message m sent by i to another process j is in
transit and (2) i is live, j waits for sj .maxAcki to be equal to sj .seq before executing an application step.
However, sj .maxAcki equals sj .seq only when j receives the set of application messages from i that were
in transit before j became active. Note that m is one such message. Therefore, j takes no more than one
application step while m is in transit. We formalize the this argument in Theorem 3 and its proof.

Theorem 3. In Alg. 1.1, each distinguished (respectively, eventually distinguished) process is 1-com-fair
(respectively, eventually 1-com-fair).

Proof. Consider an arbitrary run α and let i be any process that is eventually distinguished in α starting at
some time ti. We show that for all j and all application messages m sent from i and received by j after ti,
during the time m is in transit, either j takes at most one step or i is crashed.

Consider a process j 6= i to which i sends an application message m at some time t after ti. This message
is sent by the application when i is active and invokes sendAPP (m, j), which causes m to be added to
si.send bufferj (the message is actually sent by the scheduler later during the execution). By the assumption
that m is received by j, we know that j takes at least one application step after t. Again, note that j executes
its application step only when j is active. Let t′ > t be the earliest time after t that j becomes active (by
executing Action 4). In the active session that starts at time t′, j sends 〈getMsg, sj .seq〉 to i in Action 4.

From Lemma 3 we know that sj .maxAcki ≤ sj .seq before j executes Action 4. But Action 4 increments
sj .seq, therefore, after j executes Action 4, sj .maxAcki < sj .seq

From Lemma 4, we know that j eventually stops being active. Since i is a correct eventually distinguished
process, we also know that j does not suspect i. Therefore, if j eventually exits the active state by executing
Action 7, then eventually sj .maxAcki = sj .seq.

The above two arguments imply that while j is active, the value of sj .maxAcki is updated to sj .seq.
However, the only action that updates sj .maxAcki is Action 6, and Action 6 is executes only upon receiving
〈msgSet′, num〉.

The message 〈getMsg, sj .seq〉 sent by j in Action 4 is eventually received by i in Action 5 (or i is crashed,
in which case the lemma is satisfied). Action 5 empties si.send bufferj and sends the messages in the buffer
to j. But note that the message m was in si.send bufferj before Action 5 is executed. Therefore, message
m is sent to j in the message 〈msgSet′, sj .seq〉. This message is eventually received by j in Action 6, and
Action 6 puts message m into the receive buffer sj .receive bufferi and updates sj .maxAcki to si.seq.

Therefore, when j executes Action 7, m is already in sj .receive bufferi. Note that in Action 7, j executes
an application step which will receive all the messages in sj .receive bufferi (from receiveAPP () in Alg. 1.2).
That is, j takes no more than one step after m is sent and before m is received. Therefore, j is 1-com-fair
with respect to i for all processes j from time ti.

In other words, i is eventually 1-com-fair. In addition, if ti = 0, then i is 1-com-fair in the run α; that is,
if i is a distinguished process, then i is 1-com-fair.

Thus, we have shown that every (eventually) distinguished process is (eventually) 1-com-fair. ut

By substituting the failure detector D in Alg. 1.1 with P, 3P, S, and 3S, and applying Theorems 2
and 3, we get the following corollaries.

Corollary 1. If the failure detector D in Alg. 1.1 is the perfect failure detector P, then the action system
described in Alg. 1.1 provides the All Fair (AF) system model guarantees to the scheduled application.
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Corollary 2. If the failure detector D in Alg. 1.1 is the eventually perfect failure detector 3P, then the
action system described in Alg. 1.1 provides the Eventually All Fair (3AF) system model guarantees to the
scheduled application.

Corollary 3. If the failure detector D in Alg. 1.1 is the strong failure detector S, then the action system
described in Alg. 1.1 provides the Some Fair (SF) system model guarantees to the scheduled application.

Corollary 4. If the failure detector D in Alg. 1.1 is the eventually strong failure detector 3S, then the
action system described in Alg. 1.1 provides the Eventually Some Fair (3SF) system model guarantees to
the scheduled application.

6 Extracting Chandra-Toueg Failure Detectors From Fairness-Based Systems

In this section we show that the system models AF , SF , 3AF , and 3SF are sufficient to implement the
failure detectors P, S, 3P, and 3S, respectively. This result combined with the result in Sect. 5 shows
that AF , SF , 3AF , and 3SF have the minimal synchronism necessary to implement P, S, 3P, and 3S,
respectively.

The algorithm in Alg. 1.3 implements a failure detector under the fairness-based system models described
in Sect. 3.4. The failure detector implemented by Alg. 1.3 is determined by the fairness guarantees of the
underlying system. Specifically, the algorithm implements P, S, 3P, or 3S, if the underlying system model
is AF , SF , 3AF , or 3SF , respectively.

6.1 Algorithm Description

In Alg. 1.3, the failure detector module at process i maintains a variable timerValuej for each process j in
the system which counts down from k + d to 0, where, in the various system models described in Sect. 3.4,
the bounds on fairness are specified by the existence of k-proc-fair and d-com-fair processes. The value of
timerValuej is decremented by 1 in each step (line 10). In each step process i receives zero or more messages
from all other processes (line 2) and sends a heartbeat to each process j in the system (line 4). If i receives
a heartbeat from j, then i deletes j from the set suspectList (line 6) and resets the timer for j to k + d (line
7). If timerValuej is decremented to 0, then i adds j to suspectList (line 9). Here we assume that the failure
detector module output is suspectList. Hence, when i adds j to suspectList, i is said to suspect j as having
crashed; when i deletes j from suspectList, i is said to trust j.

6.2 Proof of Correctness

We now show that the action system in Alg. 1.3 satisfies strong completeness and different accuracy properties
depending on the underlying system model. For the purpose of the proofs, we consider an arbitrary run α
of Alg. 1.3.

Theorem 4. Alg. 1.3 satisfies strong completeness; that is, there exists a time after which every crashed
process is permanently suspected.

Proof. In α, processes send heartbeats in every step. If a process i crashes at time t in α, i stops taking
steps after t, and so stops sending heartbeats. Eventually, all the (finite number of) heartbeats sent by i
are delivered. Let the last such delivery be at time t′ ≥ t. Inspection of the code reveals that the maximum
value of timerValuei at a process j at time t′ is k + d. Thereafter, in every step executed by j after time t′,
timerValuei is decremented (if timerValuei is not already 0) until j receives another heartbeat from i. Process
j resets timerValuei to k + d only upon receiving a heartbeat from i. Since we have established that no such
heartbeat are received by j after t′, it follows that in at most k + d+ 1 steps, timerValuei is decremented to
0 at all processes j, and so j starts suspecting i (in line 9). Since j does not receive any more heartbeats
from i, j suspects i permanently. ut
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constant timeOut ← k + d
set suspectList ← ∅
∀j ∈ Π − {i} :
integer timerValuej ← timeOut

1 : {true} −→ Action 1
2 : receive 〈msgSet〉 Receives zero or more messages from each process
3 : ∀j ∈ Π − {i} do
4 : send 〈HB〉 to j Send a heartbeat to each process
5 : if (〈HB, j〉 ∈ msgSet)
6 : suspectList ← suspectList− {j} Trust upon receiving a heartbeat
7 : timerValuej ← timeOut Reset timer
8 : if (timerValuej = 0)
9 : suspectList ← suspectList ∪ {j} Suspect upon timer expiry
10 : timerValuej ← max(timerValuej − 1, 0) Decrement timer for each process

Alg. 1.3. Implementing Chandra-Toueg Oracles In System Models Where (Some) Processes are k-proc-fair and
d-com-fair

We prove accuracy properties in two steps. In the first step (Lemma 6), we show that a correct process
is trusted infinitely often; that is, if a correct process j trusts a correct process i at time t, then there exists
a time t′ > t such that j trusts i at time t′. Note that this permits j to (falsely) suspect i in the open
interval (t, t′). In the second step (Lemma 7), we show that if a process i is trusted after it is k-proc-fair and
d-com-fair, then i will be continuously trusted until i crashes. Lemmas 6 and 7 are used to prove the various
accuracy properties satisfied by Alg. 1.3, depending on the underlying system model.

Lemma 6. In a run α of Alg. 1.3, if process i is correct, then every correct process j trusts i infinitely often;
that is, ∀t ∈ IN, there exists a time t′ > t such that j trusts i at time t′.

Proof. Consider a run α of Alg. 1.3 where a process i is correct. From lines 5–6 of Alg. 1.3 we know that a
correct process j 6= i trusts process i upon receiving a message from i. We also know that i sends heartbeats
to all processes in every step (Alg. 1.3). Hence, if i is correct, then i takes steps infinitely often, and sends
heartbeats infinitely often. Reliable communication guarantees that no heartbeat is lost. Therefore, all correct
processes receive heartbeats from i infinitely often, and hence, execute lines 5–6 of Alg. 1.3 infinitely often.
Therefore, all correct processes trust i infinitely often. ut

Lemma 7. In a run α of Alg. 1.3, if process i becomes k-proc-fair and d-com-fair from time t, and the value
of timerValuei is k + d at a process j 6= i at time t′ ≥ t, then from time t′ onwards, i is never suspected by j
until i crashes.

Proof. Consider a run α of Alg. 1.3. Let i become k-proc-fair and d-com-fair in α from time t. Let the value
of timerValuei be k+d at a process j 6= i at time t′ ≥ t. We know that the value of timerValuei is decremented
by 1 in each step until j receives a message from i. We now show that j is guaranteed to receive a message
from i before timerValuei is decremented to 0.

Note that i sends a heartbeat to j in each action that i executes. Given that i is k-proc-fair and d-com-fair,
we know that i will send at least one heartbeat to j before j has taken k+1 steps after t′, and this heartbeat
is received by j before j has taken k + d+ 1 steps after t′. Recall that at time t′, the value of timerValuei is
k + d and is decremented by 1 at every step taken by j. However, j receives at least one heartbeat from i
within k + d steps, and so the value of timerValuei is reset to k + d (in line 7) before it reaches 0.

Note that for j to start suspecting i, timerValuei must be 0, and we have shown that if j starts trusting i,
then the value of timerValuei is reset to k+ d (in line 7) before it reaches 0. Therefore, from time t onwards,
i is never suspected by j until i crashes. ut

Theorem 5. If Alg. 1.3 is executed on the AF system model, Alg. 1.3 implements the perfect failure detector
P.
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Proof. The AF system model guarantees that all processes are k-proc-fair and d-com-fair from time t = 0.
Also at time t = 0, at each process j, the value of timerValuei = k + d for every other processes i in the
system. Applying Lemma 7 with t = t′ = 0, we know that i is never suspected by j until i crashes. Since i
and j are arbitrary processes in the system, it follows that no process is suspected before it crashes. This,
in conjunction with Theorem 4 shows that every process is distinguished; that is, Alg. 1.3 implements the
perfect failure detector P. ut

Theorem 6. If the action system in Alg. 1.3 is executed on the 3AF system model, Alg. 1.3 implements
the eventually perfect failure detector 3P.

Proof. Consider a pair of correct processes i and j. Recall that the 3AF system model guarantees that i is
k-proc-fair and d-com-fair from some (unknown) time t. From Lemma 6 we know that j trusts i infinitely
often, which implies that the value of timerValuei at j is k + d infinitely often. Applying Lemma 7 we know
that eventually j never suspects i. On the other hand, if i is faulty and crashes in finite time, then from
Theorem 4 we know that eventually j always suspects i. In other words, i is eventually distinguished. Since
i is an arbitrary process in the system, it follows that all the processes are eventually distinguished. That is,
Alg. 1.3 implements the eventually perfect failure detector 3P. ut

Theorem 7. If the action system in Alg. 1.3 is executed on the SF system model, Alg. 1.3 implements the
strong failure detector S.

Proof. Recall that the SF system model guarantees that some correct process i is k-proc-fair and d-com-fair
from time t = 0. Also at time t = 0, at each process j, the value of timerValuei = k + d. Applying Lemma 7
with t = t′ = 0, we know that i is never suspected by j. This, in conjunction with Theorem 4 shows that
some correct process is distinguished and all faulty processes are eventually distinguished; that is, Alg. 1.3
implements the strong failure detector S. ut

Theorem 8. If the action system in Alg. 1.3 is executed on the 3SF system model, Alg. 1.3 implements
the eventually strong failure detector 3S.

Proof. Recall that the 3SF system model guarantees that eventually some correct process i is k-proc-fair
and d-com-fair. Let j be a correct process. From Lemma 6 we know that j trusts i infinitely often, which
implies that the value of timerValuej at i is k+d infinitely often. Applying Lemma 7 we know that eventually
j never suspects i. This, in conjunction with Theorem 4 shows that some correct process is distinguished
and all faulty processes are eventually distinguished; that is, Alg. 1.3 implements the strong failure detector
S. ut

7 Failure Detectors from the Extended Chandra-Toueg Hierarchy

We have shown how failure detectors in the Chandra-Toueg hierarchy encapsulate fairness constraints. Now
we consider failure detector oracles from the extended Chandra-Toueg hierarchy which consists of all the
failure detectors whose output is a subset of the processes in the system. Specifically, we consider the G∗
family of failure detectors from [6].

The G∗ family of failure detectors in [6] output a set of trusted processes (instead of suspected processes),
and each member of this family is specified by a parameter c and denoted Gc. The Gc failure detector satisfies
strong completeness (specified in Sect. 3.2) and c-Eventual Trust, defined as follows [6].

c-Eventual Trust. In every run, there exists a set Π ′ consisting of at least c correct processes, such
that there exists a time τ after which the failure detector output of all correct processes is a set of correct
processes and a superset of Π ′. Note that the output of the failure detector may continually change as long
as, eventually and permanently, each output is a superset of Π ′.

Clearly, the Gc failure-detector definition is valid only in fault environments containing at least c correct
processes. Therefore, for the rest of this section, we only consider fault patterns that contain at least c correct
processes.

Using the definition of a distinguished process from Sect. 3.2, we see that for a given (fixed) c, the Gc
failure detector can be redefined as follows:
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– For a given c, Gc is a failure detector for which at least c correct processes are eventually distinguished,
and all faulty processes are eventually distinguished.

Consider the following fairness-based partially synchronous model: Eventually c-Fair (3c-F) is an asyn-
chronous system model where, for each run, there exists a (potentially unknown) time after which at least c
correct processes and all faulty processes are both k-proc-fair and d-com-fair, for known k and d.

We use the constructions from Alg. 1.1 and 1.3 to show that the Gc failure detector encapsulates the
Eventually c-Fair system model.

7.1 Extracting Fairness from the Gc Failure Detector

Consider an arbitrary run α of Alg.1.1 in an asynchronous system augmented with a Gc failure detector for an
arbitrary, but fixed, c. From Theorem 2, we know that every eventually distinguished process is eventually 2-
proc-fair, and from Theorem 3, we know that every eventually distinguished process is eventually 1-com-fair.
Since Gc guarantees that at least c correct processes are eventually distinguished, and all faulty processes
are eventually distinguished, we have the following corollary.

Corollary 5. If the failure detector D in Alg. 1.1 is the Gc failure detector (for a given c), then the action
system described in Alg. 1.1 provides the Eventually c-Fair (3c-F) system model guarantees to the scheduled
application.

7.2 Extracting Gc from the Eventually c-Fair System Model

Consider an arbitrary run α of Alg. 1.3 in an Eventually c-Fair (3c-F) system model for an arbitrary, but
fixed, c. From Theorem 4, we know that Alg. 1.3 eventually and permanently suspects crashed processes.

Let Π ′ denote a set of c correct processes that are guaranteed to be eventually k-proc-fair and d-com-fair
by the 3c-F system model. From Lemma 6, we know that each process j ∈ Π ′ is trusted by each correct
process i infinitely often, which implies that the value of timerValuej at i is k + d infinitely often. Applying
Lemma 7, we know that eventually i never suspects j. That is, every correct process eventually never suspects
processes in Π ′. Therefore, eventually and permanently, the outputs of Alg. 1.3 at each correct process trusts
only correct processes and is a superset of Π ′. Thus, we have the following corollary.

Corollary 6. If the action system in Alg. 1.3 is executed on the 3c-F system model, Alg. 1.3 implements
the Gc failure detector.

8 Discussion

Complete Synchrony and P. It was first noted in [13] that there exist time-free problems that are solvable in
synchronous systems, but are unsolvable with P. This indicates a ‘gap in the synchronism’ between P and
the synchronous system. The following corollary of our results explains this gap.
AF — the weakest system model to implement P — is extremely similar to the synchronous system

model with message delay being denominated in recipient’s steps in the former and in real time in the latter.
However, there is one significant difference. AF ensures full synchrony for all messages as long as the senders
are live. When a sender crashes, AF ‘loses synchronism’ for all the sender’s messages that are still in transit.
On the other hand, synchronous systems ensure the synchronism for these messages as well. This difference
in the behavior between AF and synchronous systems is the ‘gap in synchronism’ between the perfect failure
detector P and synchronous systems. To our knowledge, we are the first to characterize this gap.

On Solving Consensus. Given that 3S is the weakest failure detector to solve consensus in asynchronous
systems with a majority of correct processes [10], and we have shown that 3SF is the weakest fairness-based
system model to implement 3S. Does that mean 3SF is the weakest system model to solve consensus? The
answer is no. While 3S is the weakest to solve consensus only in majority-correct environments, 3SF is
the weakest to implement 3S in all environments. This observation suggests that there is a weaker system
model which can implement 3S in majority-correct environments, but not in all environments.
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Real-Time Bounds and Failure Detectors. Although our results argue that failure detectors are better un-
derstood as bounds on fairness and not real time, they do not discount the real-time bounds that empirical
systems incidentally satisfy. The real-time bounds become useful when considering the performance or the
Quality of Service (QoS) [14] provided by these oracles. In other words, our results provide a separation of
concerns between the correctness and performance of oracles with respect to the temporal properties of the
distributed systems. Specifically, our work shows that correctness of oracles can be determined and under-
stood exclusively through the fairness constraints of the system, and once correctness has been established,
the performance of the oracles can be analyzed exclusively through the real-time constraints that the system
satisfies.

On the definition of an atomic step. We defined an atomic step in Sect. 3.1 to consist of receiving a finite
number of messages, changing the state, and sending a finite number of messages. Other results on asyn-
chronous systems, partial synchrony, and failure detectors have adopted different definitions of an atomic
step. For instance, in [22], a process may receive up to one message, make a state transition, and send an
arbitrary but finite set of messages to other processes in a single step. On the other hand, in [18], a process
may either receive a finite set of messages or send at most one unicast message in a single step, but it
cannot do both. In [11], a process may receive at most one message, perform a state transition, and send at
most one (unicast) message in a single step. In [10], a process may receive at most one message, perform a
state transition, and send at most one message to all processes in a single step. The results in [17] explore
solvability of consensus under various definitions of an atomic step including the variants defined above.

Interestingly, the choice of the definition has a significant impact on the validity of our results. The most
sensitive aspect of the definition of an atomic step is the number of messages that a process may receive in
a single step. Our results require that a process be able to receive multiple messages in a single step. Such
sensitivity is a consequence of requiring the establishment of communicational fairness despite the sending
process taking steps faster than a receiving process. For instance, if a process i sends one message per step
to process j, and the system is 10-proc-fair and 1-com-fair, then i could send up to 10 messages to j between
two consecutive steps by j, and to satisfy communicational fairness, j would be required to receive all 10
messages when it takes its next step.

However, our results are not sensitive to the number of messages that a process may send in a single step.
The reason for such robustness is that processes can always ‘bundle’ multiple messages to a destination into
a single message and effectively send multiple messages to a single process in just one message. Similarly,
in systems where processes may send at most one message per step, messages to different processes may be
sent with a slow-down of at most n steps (where n is the number of processes in the system) when compared
to systems which follow our definition of atomic steps. Note that such a slow down affects when a message
is sent, but it does not affect the number of steps that the recipient takes while the message is in transit.
Thus, fairness guarantees may be preserved despite processes sending at most one message (instead of an
arbitrary but finite number of messages) per step.

Open Questions. We have argued that several failure detectors encapsulate fairness in executions and pro-
vided evidence by demonstrating that all the failure detectors in the Chandra-Toueg hierarchy encapsulate
such fairness constraints. This opens a larger question: do all failure detectors encapsulate fairness? The
answer is arguably no. Notable candidates for counterexamples include the failure detectors proposed in [28]
whose output can be arbitrary and need not provide semantic information about process crashes alone. This
presents another question: what set of oracles do encapsulate fairness? This question is open even when we
restrict our question to the extended Chandra-Toueg hierarchy (which include oracles like T [16], and other
parametric oracles like the ones in [42, 34, 38]). If it turns out that all oracles that output process ids do en-
capsulate fairness, then such a result provides us with a clean hierarchy of fairness-based system models that
mirrors the extended Chandra-Toueg hierarchy. On the other hand, if we discover that there exist oracles
within the extended Chandra-Toueg hierarchy that do not encapsulate fairness, then the implication is that
these oracles encapsulate something other than fairness. Knowledge of this other encapsulated information
could help in designing better crash tolerant systems.
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Another consequence of oracles encapsulating fairness is that fault environments might encapsulate fair-
ness as well. Recall that the weakest oracles sufficient to solve problems in distributed systems vary depending
on the number of processes that may crash. For instance, consider fault-tolerant consensus. Recall that 3S
is the weakest to solve the problem only in majority-correct environments [29]. In environments where an
arbitrary number of processes may crash, the weakest failure detector for the problem is a stronger oracle
(3S, Σ) [15]. Given that 3S encapsulates some fairness constraints, and Σ can be implemented in an asyn-
chronous system with majority correct, we conjecture that Σ and majority-correct encapsulate equivalent
fairness constraints in the system. Furthermore, this implies that fairness is also encapsulated by constraints
on the number of processes that may crash in the system. Based on the above observations and arguments,
consider the following question: Is fairness a more general primitive to understand crash fault tolerance in
distributed systems? That is, can fairness unify the different weakest failure detector results for the same
problem in different fault environments?

Much effort is spent pursuing the ‘weakest’ real-time-based models to implement certain oracles (like Ω,
3P, and such) for two reasons: (1) bounds in many empirical distributed systems are specified with respect to
real time, and (2) these oracles are known to be the weakest to solve many problems in distributed computing.
However, given the dependence of the weakest-oracle results on the fault environment, and the conjecture
that fault environments themselves could encapsulate fairness, it is perhaps beneficial to investigate the
‘weakest’ real-time-based models to guarantee appropriate fairness constraints (rather than oracles) so that
these constraints can then be encapsulated by various combinations of oracles and fault environments.

Acknowledgments. We thank Michel Raynal for his comments which improved this paper. We also thank the
anonymous reviewers for their comments which improved the formal framework and extended the results to
the G∗ family of failure detectors.
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