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Abstract

Wireless sensor networks (WSNs) deployed in hostile environments suffer from
a high rate of node failure. We investigate the effect of such failure rate on
network connectivity. We provide a formal analysis that establishes the rela-
tionship between node density, network size, failure probability, and network
connectivity. We show that large networks can maintain connectivity despite a
significantly high probability of node failure. We derive mathematical functions
that provide lower bounds on network connectivity in WSNs. We compute these
functions for some realistic values of node reliability, area covered by the net-
work, and node density, to show that, for instance, networks with over a million
nodes can maintain connectivity with a probability exceeding 95% despite node
failure probability exceeding 53%.
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1. Introduction

Wireless Sensor Networks (WSNs) [1] are being used in a variety of applica-
tions ranging from volcanology [2] and habitat monitoring [3] to military surveil-
lance [4]. Often, in such deployments, premature uncontrolled node crashes are
common. The reasons for this include, but are not limited to, hostility of the
environment (like extreme temperature, humidity, soil acidity, and such), node
fragility (especially if the nodes are deployed from the air on to the ground),
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and the quality control in the manufacturing of the sensors. Consequently, crash
fault tolerance becomes a necessity (not just a desirable feature) in WSNs. Typ-
ically, a sufficiently dense node distribution with redundancy in connectivity and
coverage provides the necessary fault tolerance. In this paper, we analyze the
connectivity fault tolerance of such large scale sensor networks and show how,
despite high unreliability, flaky sensors can build robust networks.

The results in this paper address the following questions: Given a static
WSN deployment (of up to a few million nodes) where (a) the node density is
D nodes per unit area, (b) the area of the region is Z units, and (c) each node
can fail1 with an independent and uniform probability ρ: what is the probability
P that the network is connected (that is, the network is not partitioned)? What
is the relationship between P , ρ, D, and Z?

Motivation. The foregoing questions are of significant practical interest. A typ-
ical specification for designing a WSN is the area of coverage, an upper bound
on the (financial) cost, and guarantees on connectivity (and coverage). High
reliability sensor nodes offer better guarantees on connectivity but also increase
the cost. An alternative is to reduce the costs by using less reliable nodes, but
the requisite guarantees on connectivity might necessitate greater node density
(that is, greater number of nodes per unit area), which again increases the cost.
As a network designer, it is desirable to have a function that accepts, as input,
the specifications of a WSN and outputs feasible and appropriate design choices.
We derive the elements of such a function and demonstrate their use..

Contribution. This paper has three main contributions. First, we formalize
and prove the intuitive conjecture that as node reliability and/or node density
of a WSN increases, the probability of connectivity also increases. We pro-
vide a probabilistic analysis for the relationship between node reliability (ρ),
node density (D), area of the WSN region (Z), and the probability of network
connectivity(P ); we provide lower bounds for P as a function of ρ, D, and Z.

Second, we provide concrete lower bounds for expected connectivity proba-
bility for various reasonable values of ρ, D, and Z.

Third, we use a novel technique for network analysis which, to our knowledge,
has not been utilized for wireless sensor networks before. The approach, model,
and proof techniques themselves may be of independent interest.

Organization. The rest of this paper is organized as follows: The related work
is described next in Section 2. The system model assumptions are discussed in
Section 3. The methodology includes tiling the plane with regular hexagons.
The analysis and results in this paper use a topological object called a level-z
polyhex that is derived from a regular hexagon. The level-z polyhex is introduced
in Section Appendix A. Section 4 introduces the notion of level-z connectedness
of an arbitrary WSN region. Section 5 uses this notion of level-z connectedness

1Node is said to fail if it crashes prior to its intended lifetime. See Section 3 for details.
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to formally establish the relationship between P , ρ, D, and Z. Finally, Section 6
provides lower bounds on connectivity for various values of ρ, D, and Z.

2. Related Work

There is a significant body of work on topological issues associated with
WSNs [5]. These issues are discussed in the context of coverage [6], connectivity
[7], and routing [8].

The results in [7] focus on characterizing the fault tolerance of sensor net-
works by establishing the k-connectivity of a WSN. However, such characteriza-
tion results in a poor lower bound of k−1 on the fault tolerance simply because
the failure of some specific sets of k nodes partitions the network. Unfortu-
nately, this is an extreme case behavior, and it fails to characterize the expected
probability of network partitioning in practical deployments.

The results in [9, 10, 11, 12, 13] establish and explore the relationship be-
tween coverage and connectivity. The results in [11] and [12] show that in large
sensor networks if the communication radius rc is at least twice the coverage
radius rs, then complete coverage of a convex area implies connectivity among
the working set of nodes. In [10], Bai et al. explore the relationship between
coverage and connectivity if rc/rs is less than 2; they establish optimal coverage
and connectivity in regular patterns including square grids and hexagonal lat-
tice. However, maintaining connectivity in such scenarios requires deployment
of additional sensors in periodic ‘strips’ across the region. The ratio rc/rs is
weakened further in [9] to show that if rc/rs = 1 then, even if each node is
highly unreliable, for large networks in a square region we can still maintain
connectivity with coverage; however, as node failure probability increases, con-
nectivity does not imply coverage. Ammari, et al., extend these results in [13]
with a focus on k-coverage: they show that if rc/rs = 1 in a k-covered homoge-
neous WSN, then the network fault tolerance is given by 4rc(rc + rs)k/r

2
s − 1

as long as the entire neighborhood of any sensor does not fail at the same time.
Another related result is [14] which shows that if a uniform random deploy-
ment of sensors in a WSN covers an entire area and 1 ≤ rc/rs ≤ 2, then the
probability of maintaining connectivity approaches 1 as rc/rs approaches 2.

A closely related work [15] explores the relationship among node density,
transmission range, and k-connectivity in WSNs where the nodes are distributed
uniformly at random. However, the results in [15] are applicable only for circular
regions and they do not consider node failures in their analysis.

Our work differs from the works cited above in three aspects: (a) we focus
exclusively on maintaining connectivity (and we are agnostic to coverage), (b)
while the results in [9, 10, 11, 12] apply to specific deployment patterns or shape
of a region, our results and methodology can be applied to any arbitrary region
and any homogeneous deployment, and (c) our analysis is probabilistic insofar
as node crashes are assumed to be independent random events and we assess
the probability of maintaining connectivity despite such crashes; we focus on
the probability of network connectivity in the average case instead of the worst
case.
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Apart from static analysis of coverage and connectivity, a significant body of
work focuses on dynamic protocols to maintain coverage and/or connectivity by
coordinating nodes to remain either active or asleep. Such schedules extend the
lifetime of a network and reduce the overall power consumption. Examples of
such protocols include AFECA [16], Naps [17], GAF [18], Span [19], ASCENT
[20], PEAS [21], and partial clustering [22]. Our work, although related to the
above, is orthogonal. Each of the above protocols behaves correctly only when
the node distribution in the WSN is “adequately redundant”; we provide a quan-
titative measure of such a “adequate redundancy” by providing lower bounds
on the probability of connectivity. Moreover, our results are obtained through
mathematical analysis, instead of simulation and experimentation. Therefore,
unlike simulation-based results, which are sensitive to the fidelity of the simu-
lated runs to the real-world behavior, our results are robust and applicable to
all homogeneous WSN deployments.

We assume that the node distribution in a WSN is homogeneous and the
region is tiled by hexagons such that nodes in a given hexagon can communicate
with the nodes in neighboring hexagons. Although a similar analysis could be
done by tiling the region with squares (or any other polygon that tiles the
plane), we chose a hexagonal tessellation for the following reason. Traditionally,
the communication and sensing range of wireless sensors is approximated by a
circle, and among the set of regular polygons that tile a plane, hexagons are the
closest approximation to a circle.

Similar models have been used in [23], [24] and [25]. Liu et al. combine
hexagonal tessellation of the plane with GAF [18] to derive energy-conserving de-
ployment schemes for WSNs. Hexagonal tessellation is used in [24] for collision-
free scheduling among nodes arranged in a lattice such that they can commu-
nicate with neighboring nodes in the lattice. Similarly, [25] uses a hexagonal
tiling for collision-free scheduling in Mobile Ad-hoc NETworks.

The hexagonal lattice used in our analysis induces a hierarchical structure
to the network, and this hierarchy can be used to decompose the connectivity
property of a large network into connectivity properties of constituent smaller
sub-networks of similar structure. This approach has been used earlier in ana-
lyzing the fault tolerance of interconnect networks [26, 27]. In [26], Chen et al.
investigate the expected fault tolerance of an n-dimensional hypercube in the
presence of node crashes. The metric for the expected fault tolerance is pre-
sented in terms of subcube-connectivity where it is assumed that smaller dimen-
sional subcubes within the hypercube are connected, and this local connectivity
property is shown to be sufficient for global connectivity. Similar methodology
is adopted in [27] for mesh networks. Analogous to the subcube-connectivity
in [26], the analysis in [27] employs the notion of submesh connectivity in which
it is assumed that smaller meshes within the larger mesh are connected, and
the global connectivity can be established from such local submesh connectiv-
ity. However, note that hypercube and mesh networks networks have extremely
rigid topologies and so the results from [26, 27] do not carry over to WSN de-
ployments. Our work follows a similar but different methodology wherein we
construct incrementally larger polyhexes using the underlying hexagons to de-
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rive a recursive function that establishes a lower bound on network connectivity
as a function of ρ and D.

3. System Model

We make the following simplifying assumptions: A WSN has a finite fixed
set of n nodes. Each node has a communication radius R. A WSN region is
assumed to be a closed topological disk on the Euclidean plane that is tiled by
regular hexagons whose sides are of length l such that nodes located in a given
hexagon can communicate reliably2 with all the nodes in the same hexagon and
adjacent hexagons. We assume that each hexagon contains at least D nodes.
We assume that a node can fail only by crashing before the end of its intended
lifetime. Node failures are independent and each node has a constant probability
ρ of failing. A hexagon is said to be empty if it contains only faulty nodes.

We say that two non-faulty nodes p and p′ are connected if either p and
p′ are in the same or neighboring hexagons, or there exists some sequence of
non-faulty nodes p1, p2, . . . , pi such that p (and p′, respectively) and p1 (and
pi, respectively) are in adjacent hexagons, and pk and pk+1 are in adjacent
hexagons, where 1 ≤ k ≤ i. We say that a region is connected if every pair of
non-faulty nodes p and p′ in the region are connected.

3.1. Level-z Polyhexes

For the analysis of WSNs in an arbitrary region, we use the notion of higher
level tilings by grouping sets of contiguous hexagons into ‘super tiles’ such that
some specific properties (like the ability to tile the Euclidean plane) are pre-
served. Such ‘super tiles’ are called level-z polyhexes. Different values of z
specify different level-z polyhexes as follows.

Definition 1. A level-z polyhex for z ∈ N is defined as follows:

• A level-1 polyhex is a regular hexagon, and each side of a level-1 polyhex
is the hexagon itself.

• A level-z polyhex for z ≥ 2 is a union of non-overlapping hexagons (a
trans-polyhex) which satisfies the following properties:

1. A level-z polyhex is a union of seven non-overlapping level-(z − 1)
polyhexes. Among the seven polyhexes, one polyhex is denoted inter-
nal and the remaining six are called external polyhexes.

2. The internal polyhex is adjacent to all the external polyhexes, and
each external polyhex is adjacent to the internal polyhex and to two
other external polyhexes.

2We assume that collision resolution techniques are always successful in ensuring reliable
communication.
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(a) The gray tiles form a level-2
polyhex.

(b) A level-3 polyhex formed by 7
level-2 polyhexes.

Figure 1: Examples of Polyhexes

3. A level-z polyhex has six sides, where each side is the union of two
sides of a level-(z − 1) polyhex and one side of another level-(z − 1)
polyhex, such that the union is a closed topological disk3.

The Appendix contains all the technical definitions and framework for a
formal specification of a level-z polyhex. We assert that for any z, a level-
z polyhex exists and tiles the plane. The formal proof for this assertion is
available in the appendix.

Recall that a side of a polyhex is a union of hexagons. For convenience, we
denote the number of hexagons in a side of a polyhex as its length; the length
of a level-z polyhex is given by

length(z) = 1 +
z−2∑
i=0

3i

The formal proof for the above claim is also in the Appendix.

4. Level-z Polyhexes and Connectivity

The analysis in Section 5 is based on the notion of level-z connectedness
that is introduced here. First, we introduce the concepts of connected level-z

3A closed topological disk is the image of a closed circular disk under a homeomorphism.
Roughly speaking, a homeomorphism is a continuous stretching and bending of the object
into a new shape (tearing or ‘cutting holes’ into the object is not allowed). Thus, any two
dimensional shape that has a closed boundary, finite area, and no ‘holes’ is a closed topological
disk. This includes squares, circles, ellipses, hexagons, and polyhexes.
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polyhexes and level-z connectedness in a WSN region, and then, we show how
level-z connectedness implies that all non-faulty nodes in a WSN region are
connected. We use this result and the definition of level-z connectedness to
derive a lower bound on the probability of network connectivity in Section 5.

Connected level-z polyhex. Intuitively, we say that a level-z polyhex is connected
if the network of nodes in the level-z polyhex is not partitioned. Formally, a
level-z polyhex Tzi is said to be connected if, given the set Λ of all hexagons in
Tzi that contain at least one non-faulty node, for every pair of hexagons p and
q from Λ, there exists some (possibly empty) sequence of hexagons t1, t2, . . . , tj
such that {t1, t2, . . . , tj} ⊆ Λ, and t1 is a neighbor of p, every ti is a neighbor of
ti+1, and tj is a neighbor of q.

Note that if a level-z polyhex is connected, then all the non-faulty nodes
in the level-z polyhex are connected as well. We are now ready to define the
notion of level-z connectedness in a WSN region.

Level-z connectedness. A WSN region W is said to be level-z connected if there
exists some partitioning of W into disjoint level-z polyhexes such that (1) each
such level-z polyhex is connected, and for every pair of such level-z polyhexes
Tzp and Tzq, there exists some (possibly empty) sequence of connected level-
z polyhexes Tz1, Tz2, . . . , Tzj (from the partitioning of W) such that Tz1 is a
neighbor of Tzp, every Tzi is a neighbor of Tz(i+1), and Tzj is a neighbor of Tzq;

(2) each side of Tzi has more than d length(z)
2 + 2z−4e non-empty hexagons.

The motivation for level-z connectedness is as follows. For a contiguous
WSN region W to be connected, it is sufficient if the following two conditions
are satisfied: (1) there exists a partitioning of W into disjoint level-z polyhexes
(for some z) such that each such level-z polyhex is connected, and (2) between
two adjacent such level-z polyhexes there exist sufficient non-empty hexagons
on the sides of the polyhexes such that two adjacent non-empty hexagons, one
from each polyhex, form a “bridge” between the two polyhexes, thus ensuring
that the entire region W is connected.

While part (1) of the definition of level-z connectedness is straightforward,
the specification of part (2) of the definition merits explanation. Between two

adjacent level-z polyhexes, at first glance, it may seem that d length(z)
2 e non-

faulty hexagons on each side is enough to form the aforementioned “bridge”.
However, because of the non-convex nature of the border of a level-z polyhex,
a greater number of hexagons are necessary to ensure such a bridge exists. For

example, consider a level-3 polyhex. Note that d length(3)
2 e = 3. However, we

can see on Figure 2, we need at least 4 non-empty hexagons on each side of a
level-3 polyhex to ensure that it is connected to an adjacent level-3 polyhex. We
will show next how the number of non-empty hexagons on each side sufficient

to ensure connectivity is more than d length(z)
2 + 2z−4e.

Lemma 1. Let T1 and T2 be two adjacent level-z polyhexes, such that the
hexagons from side S1 of T1 are adjacent to the hexagons from side S2 from

T2. If S1 and S2 each contain at least d length(z)
2 + 2z−4e non-empty hexagons,
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Figure 2: This figure illustrates how a simple majority of non-empty hexagons along the sides
of two level-3 polyhexes can still partition the network. Here hexagons with thick outline
denote the hexagons on the sides of the level-3 polyhexes along which the polyhexes are
connected to each other. The hexagons with an ‘x’ in them denote empty hexagons. Note
that length(3) = 5, and despite at least 3 non-empty hexagons on each side of the two level-3
polyhexes, the network consisting of two level-3 polyhexes is still partitioned.

then there exists a pair of hexagons h1 ∈ S1 and h2 ∈ S2, such that h1 and h2

are adjacent and non-empty.

Proof. For z = 1 and z = 2, we see that d length(z)
2 + 2z−4e = length(z). Hence,

the lemma is true for z ≤ 2. The remainder of this proof considers the case
z > 2.

In order to determine the number of non-faulty hexagons needed on S1 and
S2 we first calculate the smallest possible number of empty hexagons on S1 and
S2 combined, which causes T1 and T2 to be disconnected. Let this value be
denoted as dist(z). In other words, dist(z) is the length of the shortest possible
path consisting of adjacent empty hexagons on either S1 or S2 which disconnect
the two level-z polyhexes (for example, Figure 3(a) illustrates shortest possible
path for z = 4). Given dist(z) we can determine how many non-empty hexagons
are required on both sides so that if T1 is connected and T2 is connected, then
the union of T1 and T2 is also connected. The total number of hexagons on both
S1 and S2 together is 2·length(z); therefore, the minimum number of non-empty
hexagons needed on both sides is strictly greater than 2 · length(z)− dist(z).

It is easy to see that dist(z) is upper bounded by length(z) because if all the
hexagons on a side (say) S1 are empty, then T1 and T2 are no longer connected.
However, due to the non-convex nature of the sides of a level-k polyhex, it is
possible to have a shorter path by choosing hexagons from both polyhexes to
be empty. Consider the case where z = 3; that is, consider level-3 polyhexes.
As seen in Figure 2, we can verify that length(3) = 5 whereas dist(3) = 4; that
is length(3)− dist(3) = 1.

Note that for any z > 3, all level-z polyhexes can be constructed as a union
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(a) The shortest path con-
sisting of 12 adjacent empty
hexagons on either side of
two adjacent polyhexes that
partitions the region.

(b) The path consisting of
14 empty hexagons from a
single side that partitions
the region.

Figure 3: Empty hexagons that partition adjacent polyhexes. In the above two figures, the
empty hexagons are marked with an ‘x’ in the center.

of constituent (non-overlapping) level-3 polyhexes. Consequently, for any two
adjacent level-z polyhexes T1 and T2 and the corresponding sides S1 and S2,
if the empty hexagons in S1 ∪ S2 partition the region formed by the union
of T1 and T2, then we know that every such empty hexagon must belong to
some constituent level-3 polyhex. However, since we know from Figure 2 that
length(3) − dist(3) = 1, we conclude that length(z) − dist(z) is given by the
number of level-3 polyhexes that contribute hexagons to a side of the level-z
polyhex.

As an example, Figures 3(a) and 3(b) show the difference between the length
of a side and the actual shortest distance on the sides of two level-4 poly-
hexes. Each side of a level-4 polyhex consists of two level-3 polyhexes. Hence,
length(z)− dist(z) = 2. We extend this to higher level-z polyhexes as follows.

By the definition of a level-z polyhex, each of its sides consists of two distinct
level-(z−1) polyhexes. Therefore, a side of a level-z polyhex contains hexagons
from 2z−3 level-3 polyhexes, and so length(z)−dist(z) = 2z−3. By the definition
of dist(z), if there are more than length(z) − 2z−3 non-empty hexagons on
both sides S1 and S2, then the two polyhexes are guaranteed to be connected.

Therefore, if each side contains more than d length(z)
2 + 2z−4e hexagons, then T1

and T2 are guaranteed to be connected.

We are now ready to prove the following theorem:

Theorem 2. Given a WSN region W, if W is level-z connected for some z,
then all non-faulty nodes in W are connected.
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Proof. Suppose that the region W is level-z connected for some z. It follows
that there exists some partitioning Λ of W into disjoint level-z polyhexes such
that each such level-z polyhex is connected, and for every pair of such level-z
polyhexes Tzp and Tzq, there exists some (possibly empty) sequence of connected
level-z polyhexes Tz1, Tz2, . . . , Tzj (from the partitioning of W) such that Tz1 is
a neighbor of Tzp, every Tzi is a neighbor of Tz(i+1), and Tzj is a neighbor of

Tzq. Additionally, each side of Tzi has more than d length(z)
2 + 2z−4e non-empty

hexagons.
To prove the theorem, it is sufficient to show that for any two non-faulty

nodes in W in hexagons p and q, respectively, the hexagons p and q are con-
nected.

Let hexagon p lie in a level-z polyhex Tzp ∈ Λ, and let q lie in a level-z
polyhex Tzq ∈ Λ. Note that since Λ is a partitioning of W, either Tzp = Tzq or
Tzp and Tzq are disjoint. If Tzp = Tzq, then since Tzp is connected, it follows
that p and q are connected. Hence, all non-faulty nodes in p are connected with
all non-faulty nodes in q. Thus, the theorem is satisfied.

If Tzp and Tzq are disjoint, then it follows from the definition of level-z
connectedness that there exists some sequence of connected level-z polyhex
Tz1, Tz2, . . . , Tzj such that Tz1 is a neighbor of Tzp, every Tzi is a neighbor
of Tz(i+1), and Tzj is a neighbor of Tzq.

Consider any two neighboring level-z polyhexes (Tzm, Tzn) ∈ Λ · Λ . Since

each side of Tzi has more than d length(z)
2 +2z−4e non-empty hexagons, we know

from Lemma 1 that there exist adjacent non-empty hexagons hm and hn such
that hm is from Tzm and hn is from Tzn. Therefore, hm and hn form a “bridge”
between Tzm and Tzn allowing nodes in Tzm to communicate with nodes in Tzn.
Since Tzm and Tzn are connected level-z polyhexes, it follows that nodes within
Tzm and Tzn are connected as well. Additionally, we have established that there
exist at least two hexagons, one in Tzm and one in Tzn that are connected. It
follows that nodes in Tzm and Tzn are connected with each other as well.

Thus, it follows that Tzp and Tz1 are connected, every Tzi is connected with
Tz(i+1), and Tzj is connected with Tzq. From the transitivity of connectedness, it
follows that Tzp is connected with Tzq. That is, all non-faulty nodes in hexagon
p are connected with all non-faulty nodes in q. Since p and q are arbitrary
hexagons in W, it follows that all the nodes in W are connected.

5. On Fault Tolerance of WSN Regions

We are now ready to derive a lower bound on the connectivity probability of
an arbitrarily-shaped WSN region. LetW be a WSN region with node density of
D nodes per hexagon such that the region tiled by a patch of x level-z polyhexes
that constitute a set Λ. Let each node in the region fail independently with
probability ρ. Let ConnW denote the event that all the non-faulty nodes in
the region W are connected. Let Conn(T,z,side) denote the event that a level-z

polyhex T is connected and each side of T has more than d length(z)
2 + 2z−4e

non-empty hexagons.

10



We know that if W is level-z connected, then all the non-faulty nodes in
W are connected. Also, W is level-z connected if: ∀T ∈ Λ :: Conn(T,z,side).
Therefore, the probability that W is connected is bounded by: Pr [ConnW ] ≥
(Pr

[
Conn(T,z,side)

]
)x. Thus, in order to find a lower bound on Pr [ConnW ],

we compute a lower bound on (Pr
[
Conn(T,z,side)

]
)x.

For the remainder of this paper, the number of hexagons in a level-z polyhex
is denoted size(z). Since each level-z polyhex (for z > 1) consists of seven level-
(z − 1) polyhexes, we can easily see that size(z) = 7z−1.

Lemma 3. In a level-z polyhex T with node density of D nodes per hexagon,
suppose each node fails independently with a probability ρ. Then the probability

that T is connected and each side of T has more than d length(z)
2 + 2z−4e non-

empty hexagons is given by

Pr
[
Conn(T,z,side)

]
=

size(z)∑
i=0

Nz,i(1− ρD)size(z)−iρD·i

where Nz,i is the number of ways by which we can have i empty hexagons and
size(z)− i non-empty hexagons in a level-z polyhex such that the level-z polyhex

is connected and each side of the level-z polyhex has more than d length(z)
2 +2z−4e

non-empty hexagons.

Proof. Fix i hexagons in T to be empty such that T is connected and each

side of T has more than d length(z)
2 + 2z−4e non-empty hexagons. Since nodes

fail independently with probability ρ, and there are D nodes per hexagon, the
probability that a hexagon is empty is ρD. Therefore, the probability that ex-
actly i hexagons are empty in T is given by (1−ρD)size(z)−iρD·i. By assumption,
there are Nz,i ways to fix i hexagons to be empty. Therefore, the probability

that T is connected and each side of T has more than d length(z)
2 + 2z−4e non-

empty hexagons despite i empty hexagons is given by Nz,i(1− ρD)size(z)−iρD·i.
However, note that we can set i (the number of empty hexagons) to be anything

from 0 to size(z). Therefore, Pr
[
Conn(T,z,side)

]
is given by

∑size(z)
i=0 Nz,i(1 −

ρD)size(z)−iρD·i.

Given the probability of Conn(T,z,side), we can now establish a lower bound
for the probability that the region W is connected.

Theorem 4. Suppose each node in a WSN region W fails independently with
probability ρ, W has a node density of D nodes per hexagon and is tiled by a
patch of x level-z polyhexes. Then the probability that all non-faulty nodes in W
are connected is at least (Pr

[
Conn(T,z,side)

]
)x

Proof. There are x level-z polyhexes in W. Note that if W is level-z connected,
then all non-faulty nodes in W are connected. However, observe that W is level-
z connected if each such level-z polyhex is connected and each side of each such

level-z polyhex has more than d length(z)
2 + 2z−4e non-empty hexagons. Recall
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from Lemma 3 that the probability of such an event for each polyhex is given
by Pr

[
Conn(T,z,side)

]
. Since there are x such level-z polyhex, and failure prob-

ability of nodes (and hence disjoint level-z polyhexes) is independent, it follows
that the probability of W being connected is at least (Pr

[
Conn(T,z,side)

]
)x.

Note that the lower bound we have established depends on the function Nz,i

defined in Lemma 3. Unfortunately, to the best of our knowledge, there is no
known algorithm that computes Nz,i in a reasonable amount of time. Since
this is a potentially infeasible approach for large WSNs with millions of nodes,
we provide an alternate lower bound for Pr

[
Conn(T,z,side)

]
that is easier to

calculate. In the following lemma, recall that size(z) denotes the number of
hexagons in a level-z polyhex and size(z) = 7z−1.

Lemma 5. The value of Pr
[
Conn(T,z,side)

]
from Lemma 3 is bounded below

by Pr
[
Conn(T,z,side)

]
≥ (Pr

[
Conn(T,z−1,side)

]
)7 + (Pr

[
Conn(T,z−1,side)

]
)6 ·

ρD·size(z−1), where Pr
[
Conn(T,1,side)

]
= 1− ρD.

Proof. Recall that a level-z polyhex consists of seven level-(z−1) polyhexes with
one internal level-(z−1) polyhex and six outer level-(z−1) polyhexes. Observe
that a level-z polyhex satisfies Conn(T,z,side) if either (a) all the seven level-
(z− 1) polyhexes satisfy Conn(T,z−1,side), or (b) the internal level-(z− 1) poly-
hex is empty and the six outer level-(z − 1) polyhexes satisfy Conn(T,z−1,side).
From Lemma 3 we know that the probability of a level-(z − 1) polyhex sat-
isfying Conn(T,z−1,side) is given by Pr

[
Conn(T,z−1,side)

]
and the probability

of a level-(z − 1) polyhex being empty is ρD·size(z−1). For a level-1 polyhex
(which is a regular hexagon tile), the probability that the hexagon is not empty
is 1−ρD. Therefore, the probability that cases (a) or (b) is satisfied for z > 1 is
given by (Pr

[
Conn(T,z−1,side)

]
)7+(Pr

[
Conn(T,z−1,side)

]
)6·ρD·size(z−1). There-

fore, Pr
[
Conn(T,z,side)

]
≥ (Pr

[
Conn(T,z−1,side)

]
)7 +(Pr

[
Conn(T,z−1,side)

]
)6 ·

ρD·size(z−1) where Pr
[
Conn(T,1,side)

]
= 1− ρD.

Analyzing the connectivity probability for WSN regions that are level-z
connected where z is large, can be simplified by invoking Lemma 5, and re-
ducing the complexity of the computation to smaller values of z for which
Pr

[
Conn(T,z,side)

]
can be computed (by brute force) fairly quickly.

5.1. WSN region as a level-z polyhex

A special case considered is where the WSN region W is a single level-
z polyhex4. For W to be connected, it is sufficient if the level-z polyhex is
connected; it is not necessary for the sides of the level-z polyhex to contain

more than d length(z)
2 +2z−4e non-empty hexagons. Based on this argument, we

have the following theorem.

4Note that a level-z polyhex provides an adequate approximation for a large circular region.
Although this is a special case relative to the analysis in the previous section, circular WSN
regions are not an uncommon deployment in practice.
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Theorem 6. Let each node in a WSN region W, with node density D nodes per
hexagon, fail independently with probability ρ, and let W be tiled by a single level-
z polyhex. Then the lower bound on the probability that all non-faulty nodes in
W are connected is given by Pr [ConnW ] where Pr [ConnW ] ≥ Pr

[
Conn(T,z)

]
,

and

Pr
[
Conn(T,z)

]
≥



ρD·size(z)

+7(Pr
[
Conn(T,z−1)

]
)(ρD·size(z−1))6

+12(Pr
[
Conn(T,z−1,side)

]
)2(ρD·size(z−1))5

+15(Pr
[
Conn(T,z−1,side)

]
)3(ρD·size(z−1))4

+15(Pr
[
Conn(T,z−1,side)

]
)4(ρD·size(z−1))3

+12(Pr
[
Conn(T,z−1,side)

]
)5(ρD·size(z−1))2

+7(Pr
[
Conn(T,z−1,side)

]
)6(ρD·size(z−1))

+(Pr
[
Conn(T,z−1,side)

]
)7

where Pr
[
Conn(T,1)

]
= 1 and Pr

[
Conn(T,1,side)

]
= 1− ρD.

Proof. Let each node in a WSN region W, with node density of D nodes per
hexagon, fail independently with probability ρ, and let W be tiled by a single
level-z polyhex. Recall that the level-z polyhex tiling W consists of seven level-
(z − 1) polyhexes. W will be connected if the any of the following conditions
are true:

1. All the nodes crash: If all nodes crash, then the region is connected by
default. The probability of this event is ρD·size(z).

2. One level-(z − 1) polyhex is connected, and all other hexagons
in the remaining 6 are empty: The probability that a level-(z − 1)
polyhex is connected is given by Pr

[
Conn(T,z−1)

]
and the probability

that all the nodes in a level-(z − 1) polyhex are crashed is ρD·size(z−1).
Since there are 7 ways this could happen, the probability of this event is
7(Pr

[
Conn(T,z−1)

]
)(ρD·size(z−1))6.

3. Two adjacent level-(z − 1) polyhexes satisfy Conn(T,z−1,side), and
all other hexagons in the remaining 5 are empty: Note that if two
adjacent level-(z− 1) polyhexes satisfy Conn(T,z−1,side), then all the non-
faulty nodes in the two level-(z − 1) polyhexes are connected. Since there
are 12 ways this could happen, the probability of this event is given by
12(Pr

[
Conn(T,z−1,side)

]
)2 · (ρD·size(z−1))5.

4. Three adjacent level-(z−1) polyhexes satisfy Conn(T,z−1,side), and
all other hexagons in the remaining 4 are empty: This case is
similar to the previous case except that there are 15 ways to choose three
adjacent level-(z − 1) polyhexes from the level-z polyhex. Therefore, the
probability of this event is 15(Pr

[
Conn(T,z−1,side)

]
)3 ·(ρD·size(z−1))4.

5. Four adjacent level-(z − 1) polyhexes satisfy Conn(T,z−1,side), and
all other hexagons in the remaining 3 are empty: This case is
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similar to the previous one. Therefore, the probability of this event is
15(Pr

[
Conn(T,z−1,side)

]
)4 ·(ρD·size(z−1))3.

6. Five adjacent level-(z − 1) polyhexes satisfy Conn(T,z−1,side), and
all other hexagons in the remaining 2 are empty: This case is
similar to the earlier cases: there are 12 ways to choose five adjacent level-
(z − 1) polyhexes from the level-z polyhex. Therefore, the probability of
this event is
12(Pr

[
Conn(T,z−1,side)

]
)5 · (ρD·size(z−1))2.

7. Six adjacent level-(z−1) polyhexes satisfy Conn(T,z−1,side), and all
other hexagons in the remaining level-(z−1) polyhex are empty:
This case is similar to the earlier cases: there are 7 ways to choose six
adjacent level-(z − 1) polyhexes from the level-z polyhex. Therefore, the
probability of this event is by 7(Pr

[
Conn(T,z−1,side)

]
)6 ·(ρD·size(z−1)).

8. All the level-(z − 1) polyhexes satisfy Conn(T,z−1,side): The proba-
bility of this event is by
(Pr

[
Conn(T,z−1,side)

]
)7.

For the base case, let z = 1. Then, Pr
[
Conn(T,z)

]
corresponds to a single

hexagon. By definition the probability of a hexagon being connected to itself is
1; that is, Pr

[
Conn(T,1)

]
= 1. Note that all the sides of the hexagon consist of

the hexagon itself. Therefore, Pr
[
Conn(T,1,side)

]
corresponds to the probability

that the hexagon is non-empty, which is 1 − ρD. Combining all of the above
with the base case, the theorem is proved.

In practice, exhaustive enumeration can be used to compute the probability
for a base case greater than 1 for a tighter lower bound on fault tolerance of
such WSNs.

6. Discussion

Hexagons vs. Other Tilings. In our investigations, we tiled the WSN region
using hexagons. Note that we may tile the region using other polygons, such
as a square or triangle, that admit tessellations. However, choosing a hexago-
nal tessellation offers the following advantage. A regular hexagon and a level-2
polyhex are fairly good approximations of circular regions. Since our analysis
assumes that nodes in a given tile can communicate with nodes in all the neigh-
boring tiles, and given that communication range is assumed to circular, we see
that a regular hexagon models such behavior better than other polygons such a
square or a triangle.

Choosing the size of the hexagon. For the results from the previous section to
be of practical use, it is important that we choose the size of the hexagons in our
system model carefully. On the one hand, choosing very large hexagons could
violate the system model assumption that nodes can communicate with nodes
in neighboring hexagons, and on the other hand, choosing small hexagons could
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z i Nz,i z i Nz,i

k > 2 1 size(k) = 7k−1 3 9 382346951

3 2 1116 4 2 58653

3 3 15802 4 3 6666849

3 4 156868 4 4 566671431

3 5 1166394 4 5 38418864159

3 6 6771841 5 2 2881200

3 7 31574141 5 3 2303999486

3 8 120576864 5 4 1381247486690

Table 1: Computed Values of Nz,i

Node
density D

No. of
Nodes

Node failure
prob. ρ

No. of
Nodes

Node failure
prob. ρ

z = 3 (level-3 polyhex) z = 5 (level-5 polyhex)

3 137 31% 7203 17%

5 245 49% 12005 34%

10 490 70% 24010 58%

z = 4 (level-4 polyhex) z = 7 (level-7 polyhex)

3 1029 22% 352947 13%

5 1715 41% 588245 29%

10 3430 64% 1176490 53%

Table 2: Various values for node failure probability ρ, node density D, and level-z polyhex
that yield network connectivity probability exceeding 95%

result in poor lower bounds and thus result in over-engineered WSNs that incur
high costs but with incommensurate benefits.

If we make no assumptions about the locations of nodes within hexagons,
then the length l of the sides of a hexagon must be at most R/

√
13 to ensure

connectivity between non-faulty nodes in neighboring hexagons5. However, if
the nodes are “evenly” placed within each hexagon, then l can be as large as
R/2 while still ensuring connectivity between neighboring hexagons6. In both
cases, the requirement is that the distance between two non-faulty nodes in
neighboring hexagons is at most R.

Arbitrarily Shaped Regions. Note that our results can be applied to arbitrarily
shaped regions as follows. Given any arbitrary region, first tile the region with
hexagons of appropriate size (as discussed earlier). This will determine the node

5The reader can verify that, given two adjacent regular hexagons whose sides are of length
l, the largest distance between any two points, one in each hexagon, does not exceed l

√
13.

6The bound l ≤ R/2 is a consequence of the following observation: in a plane tiled by
regular hexagons whose sides are of length l, any two points that are 2l distance apart are
either in the same hexagon or adjacent hexagons.
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density D of the region. Next, determine the highest z, such that a patch of x
level-z polyhexes tiles that region. Now, we can apply Theorem 4 to determine
a lower bound on the probability of connectivity.

Computing Nz,i from Lemma 3. The function Nz,i does not have a closed-
form solution. It needs to be computed through exhaustive enumeration. We
computed Nz,i for some useful values of z and i and included them in Table 1.
Using these values, we applied Theorem 4 and Lemma 5 to sensor networks of
different sizes, node densities, and node failure probabilities. The results are
presented in Table 2. Next, we demonstrate how to interpret and understand
the entries in these tables through an illustrative example.

Practicality. Our results can be utilized in the following two practical scenarios.
(1) Given an existing WSN with known node failure probability, node density,
and area of coverage, we can estimate the probability of connectivity of the en-
tire network. First, we decide on the size of a hexagon as discussed previously,
and then we consider level-z polyhexes that cover the region. Next, we apply
Theorem 4 and Lemma 5 (or Theorem 6, if applicable) to compute the proba-
bility of connectivity of the network for the given values of ρ, D and z, and the
precomputed values of Nz,i in Table 1.

(2) The results in this paper can be used to design a network with a specified
probability of connectivity. In this case, we decide on a hexagon size that best
suits the purposes of the sensor network and determine the level of the poly-
hex(es) needed to cover the desired area. As an example, consider a 200 sq. km
region (approximately circular, so that there are no ‘bottle neck’ regions) that
needs to be covered by a sensor network with a 95% connectivity probability.
Let the communication radius of each sensor be 50 meters. The average-case
value of the length l of the side of the hexagon is 25 meters, and the 200 sq. km
region is tiled by a single level-7 polyhex. From Table 2, we see that if the net-
work consists of 3 nodes per hexagon, then the region will require about 352947
nodes with a failure probability of 13% (87% reliability). However, if the node
redundancy is increased to 5 nodes per hexagon, then the region will require
about 588245 nodes with a failure probability of 29% (71% reliability). If the
node density is increased further to 10 nodes per hexagon, then the region will
require about 1176490 nodes with a failure probability of 53% (47% reliability).

On the lower bounds. An important observation is that these values for node
reliability are lower bounds, but are definitely not tight bounds. This is largely
because in order to obtain tighter lower bounds, we need to compute the prob-
ability of network connectivity from Theorem 4. However, this requires us to
compute the values for Nz,i for all values of i ranging from 1 to z, which is
expensive for z exceeding 3. Consequently, we are forced to use the recursive
functions in Lemma 5 and Theorem 6 for computing the network connectivity
for larger networks. This reduces the accuracy of the lower bound significantly.
A side effect of this error is that in Table 2, we see that for a given D, ρ de-
creases as z increases. If we were to invest the time and computing resources
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to compute Nz,i for higher values of z (5, 7, and greater), then the computed
values for ρ in Table 2 would be significantly larger.
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Appendix A. Higher level tilings: polyhexes

For the analysis of WSNs in an arbitrary region, we use the notion of higher
level tilings by grouping sets of contiguous hexagons into ‘super tiles’ such that
some specific properties (like the ability to tile the Euclidean plane) are pre-
served. Such ‘super tiles’ are called level-z polyhexes. Different values of z
specify different level-z polyhexes. In this section we define a level-z polyhex,
prove its existence and specify its properties.

Appendix A.1. Definitions

These definitions have been borrowed from [28]:

A tiling of the Euclidean plane is a countable family of closed sets
called tiles, such that the union of the sets is the entire plane and
such that the interiors of the sets are pairwise disjoint. We are
concerned only with monohedral tilings — tilings in which every tile
is congruent7 to a single fixed tile called the prototile. We say that
the prototile admits the tiling.

7Recall that two sets of points are called congruent if, and only if, one can be transformed
into the other by an isometry, i.e., a combination of translations, rotations and reflections.
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[. . .]

A patch is a finite collection of non-overlapping tiles such that their
union is a closed topological disk8. A translational patch is a patch
such that the tiling consists entirely of a lattice of translations9 of
that patch.

We now define a translational patch of regular hexagons called a trans-polyhex
and a special family of trans-polyhexes called level-z polyhexes for z ∈ N.

Definition 2. A trans-polyhex is the union of a set S of non-overlapping
hexagons, which forms a translational patch.

A trans-polyhex, by virtue of being a translational patch, tiles the Euclidean
plane and satisfies the translation criterion as defined in [28]:

A closed topological disk satisfies the translation criterion if you
can divide up the boundary into six segments labeled clockwise
A,B,C,D,E, and F such that each of the three pairs A-D, B-E,
and C-F are translations of each other (both edges in one of these
pairs may be empty).

[. . .]

A prototile satisfying the translation criterion admits a lattice-translation
tiling simply by translating copies so that the edges in each pair line
up. If one of the pairs is empty, then the tiling forms a rectangular
lattice, otherwise it forms a hexagonal lattice.

The theorem from [28] associated with the translation criterion states:

Theorem 7. A prototile that is a closed topological disk admits a tiling of
the plane by a lattice of translations, if and only if, the prototile satisfies the
translation criterion.

Based on the translation criterion, we define sides of a trans-polyhex as
follows.

Definition 3. A trans-polyhex H has six sides SA–SF where each side Si is
the set of hexagons from H which contribute at least one line segment to the
boundary segment i in the translation criterion.

Note that the above definition need not uniquely determine the sides of a
trans-polyhex. We resolve this ambiguity in the definition of a level-z polyhex
in Definition 5. In order to define a level-z polyhex, we have to first define what
it means for two trans-polyhexes to be adjacent.

8A closed topological disk is the image of a closed circular disk under a homeomorphism.
Roughly speaking, a homeomorphism is a continuous stretching and bending of the object
into a new shape (tearing the object or ‘cutting holes’ into the object is not allowed). Thus,
any two dimensional shape that has a closed boundary, finite area, and no ‘holes’ is a closed
topological disk. This includes squares, circles, ellipses, hexagons, and polyhexes.

9Recall that a translation is moving every point a constant distance in a specified direction.
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Definition 4. Two trans-polyhexes T1 and T2 are adjacent if there exist a side
S1 of T1 and a side S2 of T2 such that each hexagon in S1 is adjacent to some
hexagon in S2 or vice versa, and the region formed by the union of T1 and T2

is a closed topological disc.

We are now ready to define a level-z polyhex.

Definition 5. A level-z polyhex for z ∈ N is defined as follows:

• A level-1 polyhex is a regular hexagon, and each side of a level-1 polyhex
is the hexagon itself.

• A level-z polyhex for z ≥ 2 is a trans-polyhex which satisfies the following
properties:

1. A level-z polyhex is a union of seven non-overlapping level-(z − 1)
polyhexes. Among the seven polyhexes, one polyhex is denoted inter-
nal and the remaining six are called external polyhexes.

2. The internal polyhex is adjacent to all the external polyhexes, and
each external polyhex is adjacent to the internal polyhex and to two
other external polyhexes.

3. A level-z polyhex has six sides, where each side is the union of two
sides of a level-(z − 1) polyhex and one side of another level-(z − 1)
polyhex, such that the union is a closed topological disk.

Note that although we have defined a level-z polyhex above, it still remains
to be shown that such level-z polyhexes actually exist.

Appendix A.2. Existence of level-z polyhexes

We are now ready to show the existence of level-z polyhexes for all z ∈ N.

Theorem 8. For each z ∈ N, the set of prototiles specified by level-z polyhexes
(from Definition 5) is non-empty.

Proof. The proof is an induction on z.
Base Case: z = 1. A level-1 polyhex is just a regular hexagon. It is well

known that a regular hexagon satisfies the translation criterion and admits a
hexagonal tiling of the Euclidean plane by a lattice of translations. Thus, the
base case is established.

Inductive Hypothesis: z = k. Assume that level-k polyhex exists. By the
definition, a level-k polyhex is a translational patch, so by the translation crite-
rion it follows that a level-k polyhex admits a hexagonal tiling of the Euclidean
plane.

Inductive Step: z = k+1. Take a level-k polyhex labeled (say) H1. From
the inductive hypothesis and Theorem 7, we know that the boundary of H1

consists of six segments, labeled clockwise A,B,C,D,E, and F , such that each
of the three pairs A-D, B-E, and C-F are translations of each other.
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Figure A.4: Arranging 7 level-k polyhexes H1–H7 as described in the inductive step of the
proof for Theorem 8.

Replicate H1 six times (including the labeling of the boundary segments)
so that there are 7 level-k polyhexes, H1–H7, that can be translated to each
other. Each level-k polyhex has six boundary segments, labeled clockwise A,
B, C, D, E, and F , such that each of the three pairs A-D, B-E, and C-F are
translations of each other. Denoting a segment α of a polyhex Hi as Hi.α, we
know that ∀i, j ∈ {1..7},∀α ∈ {A..F}, Hi.α can be translated to Hj .α. Also, if
α is A, B, C, D, E, or F , respectively, then let α denote D, E, F , A, B, or C,
respectively. It follows that ∀i, j ∈ {1..7},∀α ∈ {A..F}, Hi.α can be translated
to Hj .α

Arrange H1–H7 as follows: let H2.D line up with H1.A, let H3.E line up
with H1.B, let H4.F line up with H1.C, let H5.A line up with H1.D, let H6.B
line up with H1.E, and let H7.C line up with H1.F . Such an arrangement is
illustrated in Figure A.4.10

Note that (a) each H1.α is lined up with a distinct Hi.α, (b) H1.α can be
translated to Hi.α, and (c) a level-k polyhex admits a hexagonal tiling of the
Euclidean plane by a lattice of translations. From the above observations, it
follows that the arrangement of H1–H7 is a patch of level-k polyhexes.

Such a construction of polyhexes satisfies parts (1) and (2) of the definition
of a level-z polyhex because there are seven level-k polyhexes; H1 is the internal
polyhex, and each other polyhex is connected to the internal polyhex (H1) and

10Note that in such an arrangement Hi+2.α lines up with H((i+1) mod 6)+2.α.
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to two other external polyhexes (H2 −H7).
We will now determine the sides of the polyhex formed by H1–H7. Given

the arrangement of H1–H7 (and that H1–H7 is a patch), it follows that H2.C
lines up with H3.F , H3.D lines up with H4.A, H4.E lines up with H5.B, H5.F
lines with with H6.C, H6.A lines up with H7.D, and H7.B lines up with H2.E
(refer to Figure A.4 as an illustrative guide). Therefore, the boundary of H1–H7

consists of the following contiguous segments: H2.A, H2.B, H3.A, H3.B, H3.C,
H4.B, H4.C, H4.D, H5.C, H5.D, H5.E, H6.D, H6.E, H6.F , H7.E, H7.F ,
H7.A, and H2.F (as illustrated in Figure A.4).

Consider the following six segments of the boundary of H1–H7: A = (H2.A,
H2.B,H3.A), B = (H3.B, H3.C, H4.B), C = (H4.C,H4.D,H5.C), D = (H5.D,
H5.E,H6.D), E = (H6.E,H6.F,H7.E), and F = (H7.F,H7.A,H2.F ), where
(α, β, γ) denotes the concatenation of the segments α, β, and γ.

Consider the hexagons associated with each of the segments constructed
above. That is, the hexagons that contribute at least one line segment to the
segments constructed above. It can be verified that these hexagons satisfy the
requirements for a side of a level-(k + 1) polyhex in part (3) of the definition.
The construction above has six sides, and each side consists of two sides of a
level-k polyhex, and one side from another level-k polyhex.

To complete the proof, it remains to be shown that the polyhex formed by
H1–H7 is a trans-polyhex. Note that H2.A can be translated to H5.D, H2.B
can be translated to H5.E, and H3.A can be translated to H6.D. Therefore, it
follows that A and D are translations of each other. Similarly, it can be verified
that B and E are translations of each other, and C and F are translations of
each other. By applying Theorem 7 to H1–H7 we conclude that H1–H7 is a
translational patch. Also, since each Hi is a polyhex, H1–H7 is a trans-polyhex.

Therefore, by construction, it follows that H1–H7 is a level-(k+1) polyhex.
Thus, by induction on z, we have shown that for all z ∈ N, there exists a

level-z polyhex; that is, for each z ∈ N, the set of prototiles specified by level-z
polyhexes (from definition 5) is non-empty.

Figure 1(a) shows a level-2 polyhex; Figure 1(b) shows how 7 level-2 poly-
hexes can be arranged to form a level-3 polyhex.

Appendix A.3. Sides of a level-z polyhex

Recall that a level-z polyhex has six sides. Note that each side of a polyhex
is a union of hexgaons. For convenience, we denote the number of hexagons in
a side as its length. Next, we determine the length of a level-z polyhex.

Theorem 9. The length of a side of a level-z polyhex is: length(z) = 1+

z−2∑
i=0

3i.

Proof. The proof is by induction on z.
The base case is z = 1. By definition, each side of a level-1 polyhex consists

of the single hexagon that constitutes the polyhex. It is easy to see that by
substituting z = 1, we get length(1) = 1 + 0 = 1.
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Suppose the side of a level-k polyhex is length(k) = 1 +
∑k−2

i=0 3i. We now
show that the property is true for a level-(k + 1) polyhex. From the definition
of the side of a level-z polyhex (in Definition 5) we know that the side of a
level-(k + 1) polyhex consists of two sides of one level-k polyhex, and one side
of another level-k polyhex. Since two of the sides come from the same level-
k polyhex, they share a common hexagon (the ‘meeting point’ of these two
sides is the common hexagon). Therefore, length(k + 1) = 3 · length(k) − 1 =

3 · (1 +
k−2∑
i=0

3i)− 1 =

k−1∑
i=1

3i + 2 = 1 +

k−1∑
i=0

3i.
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