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Abstract. Failure detectors are commonly viewed as abstractions for
the synchronism present in distributed system models. However, inves-
tigations into the exact amount of synchronism encapsulated by a given
failure detector have met with limited success. The reason for this is that
traditionally, models of partial synchrony are specified with respect to
real time, but failure detectors do not encapsulate real time. Instead, we
argue that failure detectors encapsulate the fairness in computation and
communication. Fairness is a measure of the number of steps executed
by one process relative either to the number of steps taken by another
process or relative to the duration for which a message is in transit. We
argue that oracles are substitutable for the fairness properties (rather
than real-time properties) of partially synchronous systems. We propose
four fairness-based models of partial synchrony and demonstrate that
they are, in fact, the ‘weakest systems models’ to implement the canon-
ical failure detectors from the Chandra-Toueg hierarchy.

1 Introduction

The inability to distinguish a crashed process from a slow process makes it
impossible to solve several classic problems in distributed computing in crash-
prone asynchronous systems [9]. Efforts to circumvent this impossibility have
spawned two complementary approaches. The first approach, called partial syn-
chrony [8, 7], focuses on assuming explicit temporal guarantees on computation
and communication to enable crash detection. The second approach focuses on
augmenting asynchronous systems with oracles, called failure detectors [3], that
provide potentially incorrect information about process crashes in the system.

It has long been held that failure detectors encapsulate partial synchrony.
More precisely, a failure detector D encapsulates a partially-synchronous system
model M if and only if the following two conditions hold: (1) D can be imple-
mented in M , and (2) every problem P that is solvable in system model M is
also solvable in an asynchronous system augmented with D. Alternatively (and
more informally), the notion of encapsulation by a failure detector may be viewed
synonymously with the notion of mutual reducibility; that is, a failure detector
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D encapsulates a system model M if and only if M can implement D, and D
can implement M . As such, if D encapsulates M , then D is substitutable for
M because any problem solvable in M is also solvable in asynchrony augmented
with D.
Partial Synchrony. A system model is partially synchronous [8] if it provides
temporal bounds on computational and/or communicational quantities such as
message delays and process speeds. The knowledge of such bounds may be in-
complete or unknown. Despite such uncertainty, partial synchrony is useful for
solving problems in crash-prone distributed systems, and several such models
have been proposed in the literature(e.g., [8, 7, 12, 21, 22, 11, 20]). These models
vary in the information they provide about these bounds, and consequently they
have different crash detection capabilities. One way to formalize this notion of
crash detection capability is with failure detectors.
Failure Detectors. Informally, a failure detector [3] can be viewed as a sys-
tem service (or oracle) that can be queried for (potentially unreliable) informa-
tion about process crashes. The unreliable outputs of such oracles can be false
positives (suspecting live processes) or false negatives (not suspecting crashed
processes). From an empirical standpoint, most fault-tolerant problems in dis-
tributed computing that are otherwise unsolvable in crash-prone asynchronous
systems can be solved by either (1) assuming adequate degrees of partial syn-
chrony [8], or (2) augmenting asynchronous systems with sufficiently powerful
oracles [15]. This observation suggests that the axiomatic properties of oracles
might encapsulate the temporal properties of (suitably defined) models of partial
synchrony. Accordingly, this conjecture has led to the pursuit of ‘weakest system
models’ to implement various classes of oracles.

Current work on the weakest system models for oracles (see Sect. 2) has met
with limited success partly because the proposed system models assume real-
time bounds on communication (and possibly computation too). Unfortunately,
failure detectors do not preserve such real-time bounds. To find such weakest
system models, we need to address a more fundamental question: what precisely
about partial synchrony do failure detectors preserve?
Results. We answer the foregoing question by demonstrating that failure detec-
tors (at least when restricted to the Chandra-Toueg hierarchy [3]) encapsulate
fairness: a measure of the number of steps executed by a process relative to other
events in the system. We argue that oracles are substitutable for the fairness
properties (rather than real-time properties) of partially synchronous systems.
We propose four fairness-based models of partial synchrony and demonstrate
that they are, in fact, the ‘weakest systems models’ to implement the canonical
failure detectors from the Chandra-Toueg hierarchy in the presence of arbitrary
number of crash faults.
Significance. Our results further the shift in the direction of oracular research
away from real-time notions of partial synchrony (which have traditionally been
understood with respect to events that are essentially external to the system)
and towards fairness-based partial synchrony (which can be understood solely
with respect to other events that are internal to the system). In fact, our results
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suggest that fairness is the currency for crash tolerance and research on weaker
real-time bounds for crash tolerance should focus on enforcing appropriate fair-
ness constraints on empirical systems relative to which known oracles can be
implemented.
Organization. We present related work in Sec. 2. Sect. 3 provides specifica-
tions for the asynchronous system model, the four failure detectors, and the
four fairness-based partially-synchronous systems that we consider. Sects. 4–6
present the four equivalences between the failure detectors and the fairness-based
partially-synchronous systems. We conclude with a discussion in Sect. 7.

2 Related Work

The Chandra-Toueg Hierarchy. Chandra and Toueg [3] introduced the fol-
lowing four popular oracles: (1) the perfect failure detector P, which never sus-
pects any process before the process crashes, after some (unknown) time perma-
nently suspects all the crashed processes, and never transitions from suspecting
a process to not suspecting that process; (2) the eventually perfect failure de-
tector 3P, which after some (unknown) time stops suspecting correct processes
and begins to permanently suspect all crashed processes; (3) the strong failure
detector S, which never suspects some correct process, after some (unknown)
time permanently suspects all the crashed processes; (4) the eventually strong
failure detector 3S, which after some (unknown) time stops suspecting some
correct process and begins to permanently suspects all the crashed processes.

Chasing the Weakest Model. Among the aforementioned four Chandra-
Toueg oracles, a significant amount of work focuses on 3P and 3S. A line of work
has focused on identifying the weakest system model assumptions that suffice
for implementing these oracles. One approach is to weaken real-time constraints
on synchrony, while another approach is to dispense with real-time altogether
and instead constrain the relative ordering of certain events.

Under the first approach, the weakest real-time based message-passing model
known to date that is sufficient to implement 3P with arbitrary number of
crashes guarantees that relative process speeds are bounded (while absolute
speeds may remain unbounded above and below) [22] and that there exists an
upper bound on the average delay over subsets of messages that are separated
by bounded bursts of messages that may experience unbounded (or infinite) de-
lay [21]. Similarly, the weakest message-passing model known to date that is
sufficient to implement 3S in the presence of up to f process crashes guarantees
that computation is synchronous and some correct process has f timely outgoing
links, although the set of timely links can vary over time [12].

Under the second approach, the weakest fairness-based message passing model
known to date for implementing 3P in environments with at least two correct
processes are the Θ-model [11] and the ABC model [20]. The Θ-model bounds
the ratio of the end-to-end communication delay of messages that are simultane-
ously in transit, while the ABC model imposes a restriction on the ratio of the
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number of messages that can be exchanged between pairs of processes in certain
“relevant” segments of an asynchronous execution.

Similarly, for implementing 3S, the weakest fairness-based message-passing
model known to date was recently proposed by Raynal et al. [1] for systems
consisting of n processes with at most f crash faults in which executions progress
in “rounds” (the notion of a round is local to each process, not global), and
processes send messages to all other processes in each round. A round terminates
at a process when the process has received messages from n − f processes for
that round. The model guarantees that there exists some correct process i such
that eventually some subset of f processes receive a message from i in each of
their rounds. Furthermore, this subset of f processes can vary over time, but at
all times such a subset exists.

An approach intermediate between the real-time-based and fairness-based
approaches is presented by Biely et al. [2]. They prove equivalence (with respect
to solvability of some problems) between some models and a set of oracles includ-
ing 3S and 3P. Although the transformations presented in [2] do not preserve
bounds on real-time message delay, the authors claim that these bounds are pre-
served in a “relativistic” sense, but they do not expound on the interpretation
of the term “relativistic”. Our work formalizes the “relativistic” message delay
as a form of communicational fairness.

Rajsbaum et al. [18, 19] have tackled the problem of finding the weakest read-
write shared memory model for implementing various kinds of oracles. They
have shown that the power of so-called limited scope oracles can be expressed
as restrictions on the number of read and write operations by each process in
every round. These results are similar to ours in that they identify the power of
oracles with some kind of “fairness”. Our results differ from theirs in two ways.
First, unlike [18, 19] we investigate the exact synchronism in perpetually accurate
oracles P and S (we are the first to do so). Second, we consider message-passing
systems instead of shared-memory systems. In fact, message-passing systems
merit separate investigation because results regarding oracles in shared-memory
models in general do not carry over to message-passing models. For instance, the
weakest oracle for solving wait-free consensus in asynchronous shared-memory
is not the same as that for asynchronous message-passing [14, 5].

3 Definitions

3.1 Asynchronous System Model

The asynchronous system [10] consists of a finite set of processes Π which can
communicate with each other by reliable communication channels. We consider
the standard asynchronous system model [10], but with correct-reliable channels,
and we assume that an arbitrary number of processes can crash. A concise de-
scription follows. The detailed description of the system model specifications is
available in the full version of the paper at [16] and has been omitted here due
to space limitations.
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While reliable channels deliver every message sent without duplication or
corruption, we consider a weaker form of channels called correct-reliable chan-
nels which are guaranteed to be reliable while both the sender and the receiver
are live. Therefore, if the sender and the receiver are correct, then the channel
connecting them is guaranteed to be reliable. Otherwise, the channel is guar-
anteed to behave like a reliable channel until either the sender or the receiver
crashes. Afterwards, the channel is allowed to drop the messages in transit (but
not corrupt any messages).

We posit the existence of a discrete global time base whose range of values
is the natural numbers IN. Global time is used to mark or count the events that
occur in the system, and it is not used to measure the real-time duration between
two events. Therefore, the real-time duration between consecutive ticks of the
global time may be arbitrary, but finite. In the remainder of this paper, ‘time’
will refer to global time unless explicitly stated otherwise.

Processes execute actions in atomic steps. In an atomic step, a process re-
ceives at most one message from each process, makes a state transition, and sends
at most one message to each process. A run consists of an infinite sequence of
steps taken by processes while executing an algorithm.

We consider only crash faults. That is, a process can fail only by crashing,
which occurs when a process ceases execution without warning; a crashed process
never resumes execution. Any process that is not crashed is considered to be
live. In each run, processes are either correct or faulty. Correct processes execute
actions according to their algorithm specification, and never fail, whereas faulty
processes fail after finite time. In all runs, a fault process takes only finitely many
steps whereas correct processes take infinitely many steps.

In order to demonstrate our results, we consider two variations of the asyn-
chronous system. In the first variation, we assume that the asynchronous system
is augmented with a failure detector. In such systems, the state transition func-
tion of each process also considers the output of its local failure detector module
before determining the new state of the process and the set of messages to be
sent. Sect. 3.2 describes the failure detectors considered in this paper.

In the second variation, we assume that there are certain constraints on the
relative ordering of the atomic steps by different processes in the systems. Such
constraints determine the fairness properties satisfied by runs of these systems.
These constraints are described in Sect. 3.3.

3.2 Failure Detectors

The formal definitions of the Chandra-Toueg failure detectors are provided in [3].
Informally, failure detectors are characterized by the kind and degree of unreli-
ability of their output which is a set of suspected processes. Here, we consider
four classes of failure detectors from the original Chandra-Toueg hierarchy [3]:
Perfect failure detector (denoted P), Strong failure detector (denoted S), Even-
tually Perfect failure detector (denoted 3P), and Eventually Strong failure de-
tector (denoted 3S). All four aforementioned failure detectors guarantee that
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eventually every faulty process is permanently suspected by every correct process.
Additionally, the four failure detectors satisfy the following properties:

– P ensures that no process suspects any live process.
– S ensures that some correct process is never suspected.
– 3P ensures that correct processes are eventually never suspected.
– 3S ensures that some correct process eventually is never suspected.

3.3 Fairness Constraints

We claim that Chandra-Toueg failure detectors encapsulate fairness guarantees
of the underlying system. Such fairness is of two kinds: computational and com-
municational. Computational fairness restricts the number of steps executed by
processes relative to each other. Communicational fairness restricts the number
of steps executed by the recipient of a message while that message is in transit.
Computational Fairness. A common specification for computational fairness
is bounded relative process speeds [8] which states that the system has a bound Φ
on relative process speeds if in all intervals where some process i takes Φ+1 steps,
then all the processes not crashed in that interval are guaranteed to take at least
1 step. Note that this fairness property is symmetric; that is, if i’s process speed
is bounded relative to j’s process speed, then vice versa is true as well. However,
it is possible to define computational fairness properties that are asymmetric.

Consider our definition of proc-fairness. A process i is said to be k-proc-fair
(where k is a non-negative integer) in an infinite suffix γ of a run α, if, for all
processes j ∈ Π, in every segment of γ in which j takes k + 1 steps, either
(1) i takes at least one step, or (2) i is crashed. Note that i being k-proc-fair
with respect to j does not imply j being k-proc-fair with respect to i. As such,
proc-fairness is an asymmetric fairness property.

We extend this notion of proc-fairness as follows:

– k-proc-distinguished: A process i is said to be k-proc-distinguished in run α
if i is k-proc-fair in all suffixes of α

– Eventually k-proc-distinguished: A process i is said to be eventually k-proc-
distinguished in α if there exists a prefix of α such that, in the infinite suffix
of α that follows, i is k-proc-fair.

Like proc-fairness, the property of being proc-distinguished in asymmetric
as well. While other processes may be ‘fair’ with respect to a proc-distinguished
process i, process i need not be fair with respect to other processes; i.e., a
proc-distinguished process may take an unbounded number of steps in the du-
ration between a non-proc-distinguished process’ two consecutive steps. This is
an important distinction between computational fairness and bounded relative
process speeds defined in [8, 7]. Bounded relative process speeds may be viewed
as a special case where every process is (eventually) k-proc-distinguished.
Communicational Fairness. Specifying temporal bounds on communication
delay in terms of fairness is not straightforward. For a process i to satisfy com-
municational fairness, it is necessary that i not take ‘too many steps’ while a
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message m is en route to i. However, there is one exception: if the sender of m
crashes while m is in transit to i, then i can take an arbitrary number of steps
before m is delivered. In fact, m may even be dropped.

We capture the above intuition through the following definition for a com-fair
process. A process i is said to be d-com-fair (where d is a non-negative integer)
in a suffix γ of a run α, if, for all processes j ∈ Π, for each message m sent from
i to j in γ, during the segment of γ starting from the configuration in which m
is sent and ending with the configuration in which m is received, either (1) j
takes no more than d steps, or (2) i is crashed.

We extend this notion of com-fairness as follows:

– d-com-distinguished: A process i is said to be d-com-distinguished in run α
if i is d-com-fair in all suffixes of α.

– Eventually d-com-distinguished: A process i is said to be eventually d-com-
distinguished in run α if there exists a prefix of α such that, in the infinite
suffix of α that follows, i is d-com-fair.

Recall that in traditional partially-synchronous models [8, 7] the bounds on
message delay are measured as the number of steps taken by the sender. In
contrast, our bounds on communicational fairness are measured as the number
of steps taken by the receiver, for the following reason. Since these traditional
models assume that relative process speeds are bounded, if some live process
takes a bounded number of steps while a message is in transit, then all processes
take a bounded number of steps while that message is in transit. Hence, asserting
the existence of a bound on the number of steps by the sender is equivalent to
asserting the existence of a bound on the number of steps by the recipient in the
same time interval. In our case, since computational fairness is not a symmetric
property, a bound on the number of steps by the sender need not translate
to a bound on the number of steps by the receiver in the same time interval.
Consequently, we denominate communicational fairness as the number of steps
taken by the recipient.

Furthermore, we bound the number of steps taken by the recipient only while
the sender is live for the following reason. While the sender is not crashed, it
can successfully maintain an operational communication link with the recipient,
and the link can ensure that messages are delivered before the recipient takes
‘too many steps’. However, if the sender crashes, the link is no longer guaranteed
to stay operational, and no guarantees can be provided on message delay and
delivery.

3.4 Fairness-Based Partially-Synchronous System Models

In this subsection we present four fairness-based partially-synchronous systems
models that represent the fairness encapsulated by the four Chandra-Toueg fail-
ure detectors specified in Sect. 3.2.

1. All Fair (AF) is an asynchronous system model where: in every run, all
processes are both k-proc-distinguished and d-com-distinguished, for known
k and d.



8

2. Some Fair (SF) is an asynchronous system model where: in every run, some
correct process i is both k-proc-distinguished and d-com-distinguished, for
known k and d.

3. Eventually All Fair (3AF) is an asynchronous system model where: for
each run, there exists a (potentially unknown) time after which the system
behaves like AF .

4. Eventually Some Fair (3SF) is an asynchronous system model where: for
each run, there exists a (potentially unknown) time after which the system
behaves like SF .

4 Methodology

We claim that the Chandra-Toueg oracles encapsulate fairness (and not real-
time) properties of the underlying system. We will show that the amount of
fairness encapsulated by these oracles is specified by the aforedescribed fairness-
based system models. In a precise sense, AF , SF , 3AF , and 3SF specify
the exact amount of fairness encapsulated by P, S, 3P, and 3S, respectively.
Alternatively, it can be said that in environments where an arbitrary number of
processes may crash, AF , SF , 3AF , and 3SF are the ‘weakest’ system models
to implement P, S, 3P, and 3S, respectively.

The methodology used to establish the above equivalence is as follows. First,
we present a construction (described in Sect. 5) that uses a Chandra-Toueg or-
acle in an otherwise asynchronous system to schedule distributed applications
such that each process executes its application steps ‘fairly’ with respect to other
processes (and messages). The fairness properties guaranteed by the scheduler
depend on the available failure detector. By employing P, S, 3P, or 3S, the
scheduler provides fairness guarantees specified by AF , SF , 3AF , or 3SF ,
respectively. This shows that the failure detectors encapsulate at least as much
fairness as is specified in the corresponding fairness-based system models. Next,
we present an algorithm (described in Sect. 6) which implements a Chandra-
Toueg oracle on top of these fairness-based systems. When this algorithm is
deployed in AF , SF , 3AF , or 3SF , it implements P, S, 3P, or 3S, respec-
tively. Thus, we show that these failure detectors encapsulate no more guarantees
on fairness than what is provided by the corresponding fairness-based systems.

5 Extracting Fairness

In this section, we present a distributed scheduler that ‘extracts’ the fairness
encapsulated by the Chandra-Toueg failure detectors. The algorithm presented
is a universal construction for the Chandra-Toueg hierarchy in the sense that
depending on the failure detector used by the algorithm, the appropriate fair-
ness guarantees are provided by the distributed scheduler. For simplicity, we
assume that the application at each process always has some enabled step that
it can take. Therefore, the local scheduler module is always in one of two states:
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waiting and active. When the scheduler module is waiting, the associated appli-
cation module is not enabled to take steps. Upon becoming active, the scheduler
module enables the associated application module to execute a single step and
then the scheduler goes back to waiting. Additionally, the distributed scheduler
‘intercepts’ and forwards all the communication among the application modules.

The properties to be satisfied by the distributed scheduler are local progress
and fairness. Local progress states that every correct process must be scheduled
to execute its application steps infinitely often, regardless of process crashes in
the system. Fairness properties are as follows:

If the distributed scheduler uses:

– P, then the distributed scheduler implements the AF system model.
– S, then the distributed scheduler implements the SF system model.
– 3P, then the distributed scheduler implements the 3AF system model.
– 3S, then the distributed scheduler implements the 3SF system model.

5.1 Interface Between Scheduler And Application

The scheduler provides three interfaces for an application module to interact
with the local scheduler module and the application modules at other processes:
executeAPP (), receiveAPP (), and sendAPP (). These interfaces are specified
in Alg. 1.2 and described below.

The scheduler enables the application to take a step by invoking executeAPP()
and in response, the application takes a single atomic step. If multiple actions
of the application are enabled to be executed, then the scheduler is assumed
to make a non-deterministic choice among the enabled actions subject to the
constraint of weak fairness (which states that a continuously enabled action is
eventually executed).

The application receives messages sent by other processes by invoking re-
ceiveAPP(). The scheduler at each process i takes all the messages destined for
the application module at i and stores them locally in a receive buffer. When
the application invokes receiveAPP (), the scheduler returns the contents of the
local receive buffer to the application.

The application sends messages by invoking the sendAPP () interface. While
taking a step, if the application at process i invokes sendAPP (), the scheduler at
i stores all the messages that the application wants to send to all the processes in
a local send buffer. The scheduler module at i then sends the messages to desti-
nation process where they are stored in the receive buffers of the corresponding
scheduler modules (in Actions 5 and 6 of Alg. 1.1 as described in Sect. 5.2).
These messages are then received by the respective recipient processes when the
latter invoke receiveAPP ().

5.2 Algorithm Description

The algorithm in Algs. 1.1 and 1.2 implements a distributed scheduler with
dynamic heights (or priorities) and permits. Alg. 1.1 shows the actions of the
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enum {waiting, active} : si.state ← waiting State variable is initially set to waiting
integer si.ht ← 0 The height of process i
∀j ∈ Π − {i} :

boolean si.permitj ← (i.id > j.id) Process with higher id holds the shared permit
boolean si.reqj ← (i.id < j.id) Process with lower id holds the shared request token
integer si.htj ← 0 Process i’s view of the height of process j
integer si.seqj ← 0 Generates a new sequence number to solicit messages from j
integer si.maxAckj ← 0 The highest seq. no. among the messages received from j
set si.send bufferj The send buffer through which apps. at i send messages to j
set si.receive bufferj The receive buffer from which apps. at i receive msgs. from j

boolean si.permitj ← true Process always holds its own the shared permit

1 : {si.state = waiting} −→ Action 1
2 : ∀j ∈ Π − {i} where si.reqj ∧ ¬si.permitj do Request permit
3 : send 〈request, si.ht〉 to sj ; si.reqj ← false

4 : {upon receive 〈request, ht〉 from sj} −→ Action 2
5 : si.reqj ← true Send permit if si is waiting
6 : si.htj ← ht and sj has higher priority
7 : if (si.permitj ∧ (si.state = waiting) ∧ ((ht > si.ht) ∨ ((ht = si.ht) ∧ (i < j)))
8 : send 〈permit, si.ht〉 to sj ; si.permitj ← false

9 : {upon receive 〈permit, ht〉 from sj} −→ Action 3
10 : si.permit ← true Send permit if si is waiting
11 : si.htj ← ht and sj has higher priority
12 : if (si.reqj ∧ (si.state = waiting) ∧ ((ht > si.ht) ∨ ((ht = si.ht) ∧ (i < j)))
13 : send 〈permit, si.ht〉 to sj ; si.permitj ← false

14 : {(si.state = waiting) ∧ (∀j /∈ D :: si.permitj)} −→ Action 4 (Note: D is queried)
15 : si.state ← active Active upon holding permits from trusted processes
16 : foreach j in Π − {i}
17 : increment si.seqj by 1 Generate a new seq. no. to tag a request message
18 : send 〈reqMsg, si.seqj〉 to sj Send a request message to all processes

19 : {upon receive 〈reqMsg, num〉 from sj} −→ Action 5
20 : msgSet ← si.send bufferj Received a mesg request.
21 : si.send bufferj ← ∅
22 : send 〈msgSet, num〉 to sj Send the contents of the local send buffer

23 : {(upon receive 〈msgSet′, num〉 from sj)} −→ Action 6
24 : si.receive bufferj ← si.receive bufferj ∪msgSet′ Add to local receive buffer
25 : si.maxAckj ← max(num, si.maxAckj) Update max. ack receive so far.

26 : {(si.state = active) ∧ (∀j ∈ Π − {i} :: ((si.maxAckj = si.seqj) ∨ (j ∈ D)))} −→
Action 7 (Note that the failure detector D is queried)

27 : executeAPP () Execute an app. step; executeAPP () is specified in Alg. 1.2
28 : si.ht ← min(∀j ∈ Π − {i} :: si.htj , si.ht)− 1 Reduce height below all neighbors
29 : ∀j ∈ Π − {i} where (si.permitj) do whose height is known.
30 : send 〈permit, si.ht〉 to sj ; si.permitj ← false Send all held permits
31 : si.state ← waiting Exit the active state after executing an app. step

Alg. 1.1. Actions for scheduler at process i.
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procedure executeAPP ()
execute an enabled application action in which

application action invokes receiveAPP () to receive messages
application action invokes sendAPP (m, j) to send message m to process j

procedure receiveAPP ()
returnV alue ← ∪∀j∈Π−{i}{(si.receive bufferj , j)}
∀j ∈ Π − {i} do si.receive bufferj ← ∅
return returnV alue

procedure sendAPP (m, j)
si.send bufferj ← si.send bufferj ∪ {m}

Alg. 1.2. Interaction between the scheduler and the application.

scheduler and Alg. 1.2 shows the interface between the scheduler and the sched-
uled application. The idea of dynamic heights and permits (also called forks) is
borrowed from the algorithms to solve the dining philosophers problem in [17].
All the processes are assigned a static id and all the ids are known to all the
processes in the system.

In Alg. 1.1 each process i has the following variables: si.state which deter-
mines if the process is waiting or active. The height of a process is stored in the
variable si.ht which is initially 0. For each process j in the system, i maintains
the variables: (a) si.permitj to determine if the permit shared with j is currently
held by i, (b) si.reqj to determine if the request token to request a permit from
j is currently at i, and (c) si.htj which stores the last received value of j’s height
(in permits and request messages).

All processes start in the waiting state with the permits at higher-id processes
and request tokens at lower-id processes. For a waiting process to become active,
it must collect all its shared permits. A waiting process requests missing permits
in Action 1. Upon receiving such a request in Action 2, the process determines if
the request should be honored based on the following condition: if the process is
waiting, holds the shared permit, and the requesting process has greater height
(or equal height and higher process-id), then the process relinquishes the permit.
Otherwise the process simply holds the token and defers sending the permit if
the permit is present.

Upon receiving a permit in Action 3, the process again determines if the
permit should be kept (to be sent later) or sent based on the same condition
mentioned previously.

When a waiting process (say) i receives shared permits from all the processes
not suspected by the failure detector D, i becomes active in Action 4. Upon
becoming active, i sends an application-message request (denoted 〈reqMsg〉)
with a new sequence number (si.seqj) to each process j in the system. Upon
receiving such a message in Action 5, process j sends the contents of its local send
buffer appended with the sequence number in response. Process i receives such a
message sent by j in Action 6; process i adds the contents of the received message
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to its local receive buffer and updates its local state to reflect the latest sequence
number for which i has received a response from j (stored in si.macAckj). Upon
receiving responses from all trusted processes for the 〈reqMsg〉 messages sent
with the latest sequence number (that is, si.seqj = si.maxAckj for all j trusted by
i), Action 7 is enabled at process i. In Action 7, process i invokes executeAPP ()
to execute an application step before exiting.

This mechanism of receiving application messages before invoking execute
APP () ensures that an active process i ‘waits on’ all the messages sent by
a correct and trusted process j, thus guaranteeing that a correct and trusted
process j is also a com-distinguished process.

When a process executes an application step, the application invokes receive
APP () described in Alg. 1.2 to receive all the messages in the local receive buffer,
and the application action sends messages by invoking sendAPP () described in
Alg. 1.2 which simply adds the message to the local send buffer.

Eventually, the process exits its active state by reducing it height below all
processes (whose shared permits it holds), sends all the permits away and transits
to waiting in Action 7.

Relinquishing the shared permits before waiting ensures that a correct and
trusted process receives permits from other processes every time the other pro-
cesses take an application step. The reduction in height ensures that the process
does not ‘steal’ the permits (by sending a request token with greater height)
after relinquishing them. This allows a correct and trusted process to become a
proc-distinguished process as well.

The proof of correctness is available in the full version of the paper at [16]
and has been omitted here due to space limitations.

6 Extracting Chandra-Toueg Failure Detectors From
Fairness-Based Systems

In this section we present an algorithm that implements the failure detectors P,
S, 3P, and 3S in the system models AF , SF , 3AF , and 3SF , respectively.
This result combined with the result in Sect. 5 shows that AF , SF , 3AF , and
3SF have the minimal synchronism necessary to implement P, S, 3P, and 3S,
respectively. The algorithm is as follows:

The failure detector module at each process i maintains a timer timerValuej

for each process j in the system which counts down from k + d to 0, where
the bounds on fairness in the system models of Sect. 3.4 are specified by the
existence of k-proc-distinguished and d-com-distinguished processes. Every time
process i takes a step, it receives zero or more messages from all other processes,
decrements the value of timerValuej by 1, and sends a heartbeat to each process
j in the system. If i receives a heartbeat from j, then i trusts j and resets the
value of timerValuej to k+ d. If timerValuej is decremented to 0, then i suspects
j. The pseudo-code for the algorithm is given in Alg. 1.3.

The proof of correctness is available in the full version of the paper at [16]
and has been omitted here due to space limitations.
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constant timeOut ← k + d
set suspectList ← ∅
∀j ∈ Π − {i} :

integer timerValuej ← timeOut

1 : {true} −→ Action 1
2 : receive 〈msgSet〉 Receives zero or more messages from each process
3 : ∀j ∈ Π − {i} do
4 : send 〈HB〉 to j Send a heartbeat to each process
5 : if (〈HB, j〉 ∈ msgSet)
6 : suspectList ← suspectList− {j} Trust upon receiving a heartbeat
7 : timerValuej ← timeOut Reset timer
8 : if (timerValuej = 0)
9 : suspectList ← suspectList ∪ {j} Suspect upon timer expiry
10 : timerValuej ← max(timerValuej − 1, 0) Decrement timer for each process

Alg. 1.3. Implementing Chandra-Toueg Oracles In System Models Where (Some)
Processes are k-Proc-Distinguished and d-Com-Distinguished

7 Discussion

Complete Synchrony and P. It was first noted in [4] that there exist time-
free problems solvable in synchronous systems that are unsolvable with P. This
points to a ‘gap in the synchronism’ between P and the synchronous system.
The following corollary of our results explains this gap.
AF — the weakest system model to implement P — is extremely similar

to the synchronous system model with message delay being denominated in re-
cipient’s steps in the former and in real time in the latter. However, there is
one significant difference. AF ensures full synchrony for all messages as long
as the senders are live. When a sender crashes, AF ‘loses synchronism’ for all
the sender’s messages that are still in transit. On the other hand, synchronous
systems ensure the synchronism for these messages as well. This difference in the
behavior between AF and synchronous systems is the ‘gap in synchronism’ be-
tween the perfect failure detector P and synchronous systems. To our knowledge,
we are the first to characterize this gap.
On Solving Consensus. It is well known that 3S is the weakest failure de-
tector to solve consensus in asynchronous systems with a majority of correct
processes [14], and we have shown that 3SF is the weakest fairness-based sys-
tem model to implement 3S. Does that mean 3SF is the weakest system model
to solve consensus? The answer is no. While 3S is the weakest to solve consen-
sus only in majority-correct environments, 3SF is the weakest to implement
3S in all environments. This obervationsuggests that there is a weaker system
model which can implement 3S in majority-correct environments, but not in all
environments.
Open Questions.
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We have argued that several oracles encapsulate fairness in executions and
provided evidence by demonstrating that the oracles in the Chandra-Toueg hier-
archy encapsulate such fairness constraints. This opens a larger question: do all
oracles encapsulate fairness? The answer is arguably no. Notable candidates for
counterexamples include the failure detectors proposed in [13] whose output can
be arbitrary and need not provide semantic information about process crashes
alone. This presents another question: what set of oracles do encapsulate fair-
ness? This question is open even when restricted to the extended Chandra-Toueg
hierarchy (which include oracles like T [6], and other parametric oracles like the
ones in [2, 19]). If it turns out that all oracles that output process ids do encapsu-
late fairness, then it provides us with a clean hierarchy of fairness-based system
models that mirrors the extended Chandra-Toueg hierarchy. On the other hand,
if we discover that there exist oracles within the extended Chandra-Toueg hier-
archy that do not encapsulate fairness, then the implication is that these oracles
encapsulate something other than fairness. Knowledge of this other encapsulated
information could help in designing crash tolerant systems.

Another consequence of oracles encapsulating fairness is that fault environ-
ments might encapsulate fairness as well. Recall that the weakest oracles suffi-
cient to solve problems in distributed systems vary depending on the number of
processes that may crash. For instance, consider fault-tolerant consensus. Recall
that 3S is the weakest to solve the problem only in majority-correct environ-
ments [14]. In environments where an arbitrary number of processes may crash,
the weakest failure detector for the problem is a stronger oracle (3S, Σ) [5].
Given that 3S encapsulates some fairness constraints, and Σ can be imple-
mented in an asynchronous system with majority correct, we conjecture that
Σ and majority-correct encapsulate equivalent fairness constraints in the sys-
tem. Furthermore, this implies that fairness is also encapsulated by constraints
on the number of processes that may crash in the system. Based on the above
observations and arguments, consider the following question: Is fairness a more
general primitive to understand crash fault tolerance in distributed systems?
That is, can fairness unify the different weakest failure detector results for the
same problem in different fault environments?

Much effort is spent pursuing the ‘weakest’ real-time-based models to imple-
ment certain oracles (like Ω, 3P, and such) for two reasons: (1) bounds in many
empirical distributed systems are specified with respect to real time, and (2)
these oracles are known to be the weakest to solve many problems in distributed
computing. However, given the dependence of the weakest-oracle results on the
fault environment, and the conjecture that fault environments themselves could
encapsulate fairness, it is perhaps beneficial to investigate the ‘weakest’ real-
time-based models to guarantee appropriate fairness constraints (rather than
oracles) so that these constraints can then be encapsulated by various combina-
tions of oracles and fault environments.
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