
Asynchronous Failure Detectors

Alejandro Cornejo and Nancy Lynch and Srikanth Sastry
{acornejo,lynch,sastry}@csail.mit.edu

CSAIL, MIT

Abstract

Failure detectors — oracles that provide information about process crashes — are an important
abstraction for crash tolerance in distributed systems. Although current failure-detector theory provides
great generality and expressiveness, it also poses significant challenges in developing a robust hierarchy
of failure detectors. We address some of these challenges by proposing a variant of failure detectors
called asynchronous failure detectors and an associated modeling framework. Unlike the traditional
failure-detector framework, our framework eschews real time completely. We show that asynchronous
failure detectors are sufficiently expressive to include several popular failure detectors. Additionally, we
show that asynchronous failure detectors satisfy many desirable properties: they are self-implementable,
guarantee that stronger asynchronous failure detectors solve more problems, and ensure that their outputs
encode no information other than process crashes. We introduce the notion of a failure detector being
representative of a problem to capture the idea that some problems encode the same information about
process crashes as their weakest failure detectors do. We show that a large class of problems, called finite
problems, do not have representative failure detectors.

1 Introduction

Failure detectors [5] are a popular mechanism for designing asynchronous distributed algorithms for crash-
prone systems. Conceptually, they provide (potentially unreliable) information about process crashes in the
system. This information may be leveraged by asynchronous algorithms for crash tolerance. Technically,
failure detectors are specified by constraints on their possible outputs, called histories, relative to the actual
process crashes in the system, called the fault pattern. The fault pattern is the ‘reality’, and the history is an
‘approximation’ of that reality. A failure detector is a function that maps every fault pattern (the ‘reality’)
to a set of admissible histories (the ‘approximations’). The stronger a failure detector is, the closer its
admissible ‘approximations’ are to the ‘reality’.

We explore the modeling choices made in the traditional failure-detector framework, and we focus on
a variant of failure detectors called asynchronous failure detectors. We also offer an alternative modeling
framework to study the properties of asynchronous failure detectors. Briefly, asynchronous failure detectors
are a variant of failure detectors that can be specified without the use of real time, are self-implementable, and
interact with the asynchronous processes unilaterally; in unilateral interaction, the failure detector provides
outputs to the processes continually without any queries from the processes. We show that asynchronous
failure detectors retain sufficient expressiveness to include many popular and realistic [7] failure detectors
while satisfying several desirable properties.

1.1 Background and Motivation

The canonical works [5, 4] pioneered the theory of failure detectors. Results in [5] showed how sufficient
information about process crashes can be encoded in failure detectors to solve problems in asynchronous

1

systems. Complementary work in [4] showed that some information about crashes is actually necessary; in
particular, they showed that Ω is a “weakest” failure detector to solve consensus in crash-prone asynchronous
systems. Their proposed proof technique has been used to demonstrate weakest failure detectors for many
problems in crash-prone asynchronous systems (cf. [8, 24, 11, 14]). Recent results have shown that a large
class of problems have a weakest failure detector [17] while yet another class of problems do not have a
weakest failure detector [3].

From a modeling perspective, failure detectors mark a departure from conventional descriptions of distri-
buted systems. Conventionally, the behavior of all the entities in a distributed system model — processes,
channels, and other entities — are either all asynchronous or are all constrained by the passage of real
time. In contrast, in the failure-detector model, only the failure-detector behavior is constrained by real
time, whereas the behavior of all other entities is asynchronous. The differences between the two styles
of models have been the subject of recent work [6, 17] which has brought the theory of failure detectors
under additional scrutiny. We discuss five aspects of failure-detector theory that remain unresolved: self-
implementability, interaction mechanism, the kind of information provided by a failure detector, comparing
failure-detector strengths, and the relationship between weakest failure detectors and partial synchrony.

Self-Implementability. Failure detectors need not be self-implementable. That is, there exist failure
detectors (say) D such that it is not possible for any asynchronous distributed algorithm to implement an
admissible behavior ofD despite having access to the outputs fromD. Since a failure detectorD′ is stronger
then a failure detector D iff D′ can implement D, we arrive at an unexpected result that a failure detector D
need not be comparable to itself.

Jayanti et. al. resolve the issue of self-implementability in [17] by separating the notion of a failure
detector from an implementation of a failure detector. A failure detector provides outputs to each process
at each time instant, but a failure-detector implementation provides outputs only upon being queried. An
implementation of a failure detector D is said to be correct if, for every query, the output of the implemen-
tation is a valid output of D for some time in the interval between the query and the output. In effect, the
definition of “implementing a failure detector” in [17] collapses multiple classes of distinct failure detectors
into a single equivalence class.1 The broader impact of results from [17] on the landscape of failure-detector
theory remains unexplored.

Interaction Mechanism. The mechanism proposed in [17] explicitly requires that failure-detector im-
plementations interact with processes via a query-based interface. An alternative interface is one in which
failure-detector implementations provide outputs to processes unilaterally and continually, without queries.
To our knowledge, the motivation for choosing either interface has not been adequately elucidated despite
non-trivial consequences of the choice. For instance, recall that self-implementability of a failure detec-
tor in [17] depends critically on the query-based interface. Also, the so-called ‘lazy’ implementations of
failure detectors [10] depend on a query-based interface to ensure communication efficiency; an analogous
optimization is not known with a unilateral interface. Therefore, the significance and consequences of the
interaction model merit investigation.

Information About Crashes Alone. Whether or not failure detectors can provide information about
events other than process crashes has a significant impact on the weakest failure detectors for problems such
as Non-Blocking Atomic Commit [14, 15] and Uniform Reliable Broadcast [1, 16]. In order to restrict failure
detectors to the ones that give information only about crashes, the authors in [1] consider failure detectors
that are exclusively a function of the fault pattern. In [14], the authors further restrict the universe of failure
detectors to timeless failure detectors, which provide information only about the set of processes that crash,
and no information about when they crash. To our knowledge, the necessary and sufficient conditions for

1For example, consider the instantaneously perfect failure detector P+ [6] which always outputs the exactly the set of crashed
processes and the perfect failure detector P [5] which never suspects live processes and eventually and permanently suspects crashed
processes. Under the definition of “implementing a failure detector” from [17], an implementation of P+ is indistinguishable from
an implementation of P .

2

failure detectors to provide information about crashes alone remains unresolved.
Comparing Failure Detectors. Not all information provided by failure detectors may be useful in an

asynchronous system. For instance, if a failure detector provides the current real-time in its outputs (in
addition to other information), the processes cannot use this information because passage of real time is
not modeled in an asynchronous system. Suppose we consider two failure detectors D and D′ where D is
timeless, and D′ provides all the information provided by D; additionally D′ provides the current real time
as well. Clearly, D′ is strictly stronger than D. However, since the asynchronous system cannot use the
information about real time provided by D′, there exist no problems that can be solved in an asynchronous
system with D′, but that cannot be solved with D. This leads to a curious conclusion: there exist failure
detectors (say) D and D′ such that D′ is strictly stronger than D, and yet D′ cannot solve a harder problem
than D. This begs the following question: what does the relative strength of failure detectors tell us about
the relative hardness of problems they solve?

Weakest Failure Detectors and Partial Synchrony. Failure detectors are often viewed as distributed
objects that encode information about the temporal constraints on computation and communication neces-
sary for their implementation; the popular perception is that several failure detectors are substitutable for
partial synchrony in distributed systems [19, 21, 20]. Therefore, if a failure detector D is the weakest to
solve a problem P , then a natural question follows: is the synchronism encoded in the outputs of D the
minimal synchronism necessary to solve P in a crash-prone partially synchronous system? Work to date
suggests that the answer is affirmative for some problems [19, 22] and negative for others [6]. To our knowl-
edge, there is no characterization of the problems for which the aforementioned question is answered in the
affirmative or in the negative.

Summary. Based on our understanding of the state of the art, we see that failure-detector theory is a
very general theory of crash tolerance with important results and novel methods. These results and methods
provide a qualitative understanding of the amount of information about crashes necessary and sufficient to
solve various problems in asynchronous systems. However, the generality of the theory makes it difficult to
develop a robust hierarchy of failure detectors and to determine the relative hardness of solving problems in
crash-prone asynchronous systems.

1.2 Contribution

In this paper, we examine a new variant of failure detectors called asynchronous failure detectors (AFDs)
and we show that they satisfy many desirable properties. We define AFDs through a set of basic properties
that we expect any “reasonable” failure detector to satisfy. We demonstrate the expressiveness of AFDs by
defining many traditional failure detectors as AFDs. Restricting our focus to AFDs offers several advantages.

First, AFDs are self-implementable and their specification does not require real time. Therefore, unlike
current failure-detector models, all the entities in the distributed system are asynchronous. In order to specify
AFDs, we propose a new modeling framework that completely eschews real time, which allows us to view
failure detectors as problems within the asynchronous model. This allows us to compare failure detectors as
we compare problems; it also allows us to compare problems with failure detectors, and vice versa.

Second, AFDs provide outputs to the processes unilaterally, without queries. Therefore we preserve the
advantages offered by the framework in [17] while ensuring failure detectors provide information only about
process crashes.

Third, the hierarchy of AFDs ordered by their relative strength induces an analogous hierarchy of prob-
lems ordered by their relative hardness. In fact, if an AFD D is strictly stronger than another AFD D′, then
we show that the set of problems solvable with D is a strict superset of the set of problems solvable by D.

Fourth, AFDs clarify a relationship between a weakest failure detector to solve a problem and the min-
imal synchronism that is necessary and sufficient to solve the same problem. We introduce the concept of
representative AFDs for a problem. Briefly, an AFD D is “representative” of a problem P iff D is sufficient

3

to solve P and D can be extracted from a (blackbox) solution to P . By construction, the synchronism en-
coded by the outputs of a representative AFD for a problem P is also the minimal synchronism sufficient to
solve P . We show that finite problems (such as consensus and set agreement) do not have a representative
AFD, but they have a weakest failure detector [17].

2 I/O Automata

We use the I/O Automata framework [18] for specifying the system model and failure detectors. Briefly, in
the I/O framework each component of a distributed system is modeled as a state machine, where different
components interact with each other through input and output actions. This section provides an overview of
I/O-Automata-related definitions used in this paper. See [18, Chapter 8] for a thorough description of the
I/O Automata framework.

2.1 Definitions

An I/O automaton (or simply, an automaton) is a (possibly infinite) state machine. Formally, an I/O automa-
ton consists of five components: a signature, a set of states, a set of initial states, a state-transition relation,
and a set of tasks. We describe these components next.

Actions, Signature, and Tasks. The state transitions in an automaton are associated with named ac-
tions; the set of actions of an automaton A is denoted act(A). Actions are classified as input, output, or
internal, and they constitute the signature of the automaton. The set of input, output, and internal actions
of an automaton A are denoted input(A), output(A), and internal(A), respectively. Input and output
actions are collectively called external actions, and output and internal actions are collectively called locally
controlled actions. The locally controlled actions of an automaton are partitioned into tasks.

Internal actions of an automaton are visible only to the automaton itself whereas external actions are
visible to other automata as well; automata interact with each other through external actions. Unlike locally
controlled actions, input actions arrive from the outside and are assumed not to be under the automaton’s
control.

States. The set of states of an automaton A is denoted states(A). A non-empty subset init(A) ⊆
states(A) is designated to be the set of initial states.

State-Transition relation. The state transitions in an automaton A are restricted by a state-transition
relation, denoted trans(A), which is a set of tuples of the form (s, a, s′) where s, s′ ∈ states(A) and
a ∈ act(A). Each such tuple (s, a, s′) is a transition, or a step, of A.

For a given state s and an action a, if trans(A) has some step of the form (s, a, s′), then a is said to be
enabled in s. Every input action in A is enabled in all the states of A. A task C, which consists of a set of
locally controlled actions, is said to be enabled in a state s iff some action in C is enabled in state s.

Intuitively, each step of the form (s, a, s′) denotes the following behavior: the automaton A, in state s,
performs action a and changes its state to s′.

2.2 Executions And Traces

Now we describe how an automaton executes. An execution fragment of an automaton A is a finite se-
quence s0, a1, s1, a2, . . . , sk−1, ak, sk, or an infinite sequence s0, a1, s1, a2, . . . , sk−1, ak, sk, . . ., of alter-
nating states and actions of A such that for every k ≥ 0, action ak+1 is enabled in state sk. An execution
fragment that starts with an initial state is called an execution. Each occurrence of an action in an execution
fragment is said to be an event.

A trace of an execution denotes only the externally observable behavior. Formally, the trace t of an
execution α is the subsequence of α consisting of all the external actions. We say that t is a trace of an

4

automaton A if t is the trace of some execution of A. When referring to specific events in a trace, we use
the following convention: if t contains at least x events, then t[x] denotes the xth event in the trace t, and
otherwise, t[x] = ⊥. Throughout this article, we assume that no action is named ⊥.

It is useful to consider subsequences of traces that contain only certain events. We accomplish this
through the notion of a projection. Given a sequence of actions t and a set of actions B, the projection of t
over B, denoted t|B , is the subsequence of t consisting of exactly the events from B.

2.3 Composing I/O Automata

A collection of I/O automata may be composed by matching output actions of some automata with the same-
named input actions of others. Specifically, each output of an automaton may be matched with same-named
input of any number of other automata. Upon composition, all the actions with the same name are performed
together.

2.4 Fairness

When considering executions of a composition of I/O automata, we are interested in the executions in which
all the automata get fair turns to perform steps; such executions are called fair executions.

Recall that in each automaton, the locally controlled actions are partitioned into tasks. An execution
fragment α of an automaton A is said to be a fair execution fragment iff the following two conditions hold
for every taskC inA. (1) If α is finite, then no action inC is enabled in the final state of α. (2) If α is infinite,
then either (a) α contains infinitely many events from C, or (b) α contains infinitely many occurrences of
states in which C is not enabled.

A trace t of A is said to be a fair trace if t is the trace of a fair execution of A.

2.5 Deterministic Automata

We define an action a (of an automaton A) to be deterministic iff for every state s, there exists at most one
transition of the form (s, a, s′) in trans(A). We define an automaton A to be task deterministic iff (1) for
every task C and every state s of A, at most one action in C is enabled in s, and (2) all the actions in A are
deterministic. An automaton is said to be deterministic iff it is task deterministic, has exactly one task, and
has a unique start state.

3 Crash Problems

This section provides definitions of problems, distributed problems, crashes, crash problems and asyn-
chronous failure detectors.

3.1 Problems

A problem P is a tuple (IP , OP , TP) where IP and OP are disjoint sets of actions and TP is a set of (finite
or infinite) sequences over these actions.

Distributed Problems. Here, we introduce a fixed finite set Π of n location IDs; we assume that Π does
not contain the element ⊥.

For a problem P , we define a mapping loc : IP ∪ OP → Π ∪ {⊥} which associates an action to a
location ID or ⊥. For an action a, if loc(a) = i and i ∈ Π, then a is said to occur at i. Problem P is said to
be distributed over Π if, for every action a ∈ IP ∪OP , loc(a) ∈ Π.

5

For convenience, the location of each action is included in the name of the action as a subscript; for
instance, if an action a occurs at i, then the action is named ai.

Crash Problems. We posit the existence of a set of actions {crashi|i ∈ Π}, denoted Î; according to
our conventions loc(crashi) = i. A problem P ≡ (IP , OP , TP) that is distributed over Π, is said to be a
crash problem iff, for each i ∈ Π, crashi is an action in IP ; that is, Î ⊆ IP .

Given a sequence t ∈ TP , faulty(t) denotes the set of locations at which a crash event occurs in t.
Similarly, live(t) denotes the set of locations for which a crash event does not occur in t. The locations in
faulty(t) are said to be faulty in t, and the locations in live(t) are said to be live in t.

For convenience, we assume that for any two distinct crash problems P ≡ (IP , OP , TP) and P ′ ≡
(IP ′ , OP ′ , TP ′), (IP ∪ OP) ∩ (IP ′ ∪ OP ′) = Î . The foregoing assumption simplifies the issues involving
composition of automata; we discuss these in Section 5.

3.2 Asynchronous Failure Detectors

Recall that a failure detector is an oracle that provides information about crash failures. In our modeling
framework, we view failure detectors as a special type of crash problems and are called asynchronous failure
detectors. A necessary condition for a crash problem P ≡ (IP , OP , TP) to be an asynchronous failure
detector is crash exclusivity, which states that IP = Î; that is, the actions IP are exactly the crash actions.
Crash exclusivity guarantees that the only inputs to a failure detector are the crash events, and hence, failure
detectors provide information only about crashes. An asynchronous failure detector also satisfies additional
properties, but before describing these properties formally we need some auxiliary definitions.

Let D ≡ (Î , OD, TD) be a crash problem. For each i ∈ Π, Fi is the set of actions in OD at i; thus,
OD = ∪i∈ΠFi. We begin by defining the following terms. Let t be an arbitrary sequence over Î ∪OD.

Valid sequences. The sequence t is said to be valid iff (1) for every i ∈ Π, no event in OD occurs at i
after a crashi event in t, and (2) if no crashi event occurs in t, then t contains infinitely many events in OD

at i.
Sampling. A sequence t′ is a sampling of t iff (1) t′ is a subsequence t, (2) for every location i ∈ Π, (a)

if i is live in t, then t′|Fi = t|Fi , and (b) if i is faulty in t, then i is faulty in t′ and t′|Fi is a prefix of t|Fi .
Constrained reordering. Let t′ be a permutation of events in t; t′ is constrained reordering of t iff,

for every pair of events e and e′, if (1) e precedes e′ in t and (2) either loc(e) = loc(e′), or e ∈ Î , then e
precedes e′ in t′ as well.

Now we define an asynchronous failure detector. A crash problem of the form D ≡ (Î , OD, TD) (which
satisfies crash exclusivity) is an asynchronous failure detector (AFD, for short) iff D satisfies the following
properties.

Validity. Every sequence t ∈ TD is valid.
Closure Under Sampling. For every sequence t ∈ TD, every sampling of t is in TD.
Closure Under Constrained Reordering. For every sequence t ∈ TD, every constrained reordering of

t is in TD.
A brief motivation for the above properties is in order. The validity property ensures that after a location

crashes, no outputs occur at that location, and if a location does not crash, outputs occur infinitely often
at that location. Closure under sampling permits a failure detector to ‘skip’ or ‘miss’ any suffix of outputs
at a faulty location. Finally, closure under constrained reordering permits ‘delaying’ output events at any
location.

3.3 Examples of AFDs

Here, we specify some of the failure detectors that are most widely used and cited in literature, as AFDs.

6

The Leader Election Oracle. Informally, Ω continually outputs a location ID at each location; eventu-
ally and permanently, Ω outputs the ID of a unique live location at all the live locations.

We specify our version of Ω ≡ (Î , OΩ, TΩ) as follows. The action set OΩ = ∪i∈ΠFi, where, for each
i ∈ Π, Fi = {FD-Ω(j)i|j ∈ Π}. TΩ is the set of all valid sequences t over Î∪OΩ that satisfy the following
property: if live(t) 6= ∅, then there exists a location l ∈ live(t) and a suffix tsuff of t such that, tsuff |OΩ

is
a sequence over the set {FD-Ω(l)i|i ∈ live(t)}.

Perfect and Eventually Perfect Failure Detectors. Here we specify two popular failure detectors
among the canonical failure detector from [5]: the perfect failure detector P and the eventually perfect
failure detector ♦P . Informally, P never suspects any location (say) i until event crashi occurs, and it
eventually and permanently suspects crashed locations; ♦P eventually and permanently never suspects live
locations and eventually and permanently suspects faulty locations.

We specify our version of P ≡ (Î , OP , TP) as follows. The action set OP = ∪i∈ΠFi, where, for each
i ∈ Π, Fi = {FD-P(S)i|S ∈ 2Π}. TP is the set of all valid sequences t over Î ∪ OP that satisfy the
following two properties. (1) For every prefix tpre of t, if i ∈ live(tpre), then for each j ∈ Π and for
every event of the form FD-P(S)j in tpre, i /∈ S. (2) There exists a suffix tsus of t such that, for every
i ∈ faulty(t), for each j ∈ Π, and for every event of the form FD-P(S)j in tsus, i ∈ S.

We specify our version ♦P ≡ (Î , O♦P , T♦P) as follows. The action set O♦P = ∪i∈ΠFi, where, for
each i ∈ Π, Fi = {FD-♦P(S)i|S ∈ 2Π}. T♦P is the set of all valid sequences t over Î ∪ O♦P that
satisfy the following two properties. (1) There exists a suffix ttrust of t such that, for every pair of locations
i, j ∈ live(t), and for every event of the form FD-♦P(S)j in ttrust, i /∈ S. (2) There exists a suffix tsus of
t such that, for every i ∈ faulty(t), for each j ∈ live(t), and for every event of the form FD-♦P(S)j in
tsus, i ∈ S.

It is easy to see that Ω ≡ (Î , OΩ, TΩ), P ≡ (Î , Ô, TP) and ♦P ≡ (Î , Ô, T♦P) satisfy all the properties
of an AFD and the proof of the aforementioned assertion is left as an exercise for the reader. Similarly, it is
straightforward to specify failure detectors like Ωk and Ψk as AFDs.

4 System Model and Definitions

An asynchronous system is modeled as the composition of a collection of the following I/O automata:
process automata, channel automata, a crash automaton, and possibly other automata (including a failure-
detector automata).

Process Automata. The system contains a collection of n process automata: one process automaton at
each location. Each process automaton is a deterministic automaton whose actions occur at a single location.
A process automaton whose actions occur at i is denoted proc(i). It has an input action crashi which is an
output from the crash automaton; when crashi occurs, it permanently disables all locally controlled actions
of proc(i). The process automaton proc(i) sends and receives messages through a set of output actions
{send(m, j)i|m ∈ M∧ j ∈ Π \ {i}}, and a set of input actions {receive(m, j)i|m ∈ M∧ j ∈ Π \ {i}},
respectively. In addition, process automata may interact with the environment automaton and other automata
through additional actions.

A distributed algorithm A is a collection of process automata, one at each location; for convenience, we
write Ai for the process automaton proc(i) at i.

Channel Automata. For every ordered pair (i, j) of distinct locations, the system contains a channel
automaton Ci,j . The input actions are {send(m, j)i|m ∈M}, which are outputs from the process automa-
ton at i. The output actions are {receive(m, i)j |m ∈ M}, which are inputs to the process automaton at j.
Each such channel automaton implements a reliable FIFO link.

Crash Automaton. The crash automaton contains the set {crashi|i ∈ Π} ≡ Î of output actions and no
input actions. Every sequence over Î is a fair trace of the crash automaton.

7

se
nd

(*
,*

) j

se
nd

(*
,*

) i

se
nd

(*
,*

) z

re
ce

iv
e

(*
,*

) i

re
ce

iv
e(

*,
*)

j

re
ce

iv
e(

*,
*)

z

...

O
th

e
r

A
ut

om
at

a
(in

cl
ud

in
g

F
ai

lu
re

D

et
ec

to
rs

)
Reliable FIFO Channels

i j z

Environment Automaton
Crash

Automaton

crash
i

crash
j

crash
i

crash
z

crash
i

crash
j

crash
z

...

crash
i

crash
j

crash
z ...

Figure 1: Interaction diagram for a message-passing asynchronous distributed system augmented with a
failure detector automaton.

Environment Automaton. The environment automaton, denoted E , models the external world with
which the distributed system interacts. The external signature of the environment matches the input and
output actions of the process automata that do not interact with other automata in the system. The set of
fair traces that constitute the externally observable behavior of E specifies “well-formedness” restrictions,
which vary from one system to another.

Other Automata. The system may contain other automata with which the process automata and the
crash automaton interact. Typically, these automata solve a crash problem, as defined in the next section.

5 Solving Problems

In this section, we define what it means for an automaton to solve a crash problem and for a distributed
algorithm to solve a crash problem. We also define what it means for a system to solve a crash problem P
using another crash problem P ′. We use the aforementioned definitions to define what it means for an AFD
to be sufficient to solve a crash problem, and vice versa.

5.1 Solving a Crash Problem

An automaton U solves a crash problem P ≡ (IP , OP , TP) in an environment E , if (1) the input actions of
U are IP , and the output actions of U are OP , (2) the input actions of E are OP , and the output actions of E
are IP \ Î , and (3) the set of fair traces of the composition of U , E , and the crash automaton is a subset of
TP .

A distributed algorithm A solves a crash problem P in an environment E (or, A solves P in E), iff the
automaton Â, which is obtained by composingAwith the channel automata, solves P in E . A crash problem
P is said to be solvable in an environment E , iff there exists a distributed algorithm A such that A solves P
in E . If a crash problem is not solvable in E , then it is said to be unsolvable in E .

8

5.2 Using One Crash Problem to Solve Another

Often, an unsolvable crash problem P may be solvable in a system that contains an automaton that solves
some other unsolvable crash problem P ′. We describe the relationship between P and P ′ as follows.

A distributed algorithm A solves a crash problem P using another crash problem P ′ in an environment
E (or succinctly, A solves P using P ′ in E), iff the following is true. Let Â be the composition of A
with the channel automata, the crash automaton, and the environment E . For every fair trace t of Â, if
t|IP ′∪OP ′ ∈ TP ′ , then t|IP∪OP

∈ TP .
We say that a crash problemP ′ ≡ (IP ′ , OP ′ , TP ′) is sufficient to solve a crash problemP ≡ (IP .OP , TP),

in environment E , denoted P ′ �E P iff there exists a distributed algorithm A that solves P using P ′ in E . If
P ′ �E P , then also we say that P is solvable using P ′ in E . If no such distributed algorithm exists, then we
state that P is unsolvable using P ′ in E , and we denote it as P ′ 6�E P .

It is worth noting that in the foregoing definition, the problems P and P ′ must be distinct in order
for automata composition to be applicable. However, it is useful to consider problems that are “sufficient to
solve themselves”; that is, given a crash problem P and an environment E , it is useful to define the following
relation: P �E P . We do so using the notion of renaming.

5.2.1 Renaming and Self-Implementability

A crash problem P ′ ≡ (IP ′ , OP ′ , TP ′) is said to be a renaming of a crash problem P ≡ (IP , OP , TP) iff (1)
(IP ∪OP) ∩ (IP ′ ∪OP ′) = Î , and there exist bijections rIO : IP ∪OP → IP ′ ∪OP ′ and rT : TD → TD′

such that, (1) for each a ∈ Î , rIO(a) = a, for each a ∈ IP \ Î , rIO(a) ∈ IP ′ \ Î , for each a ∈ OP ,
rIO(a) ∈ OP ′ , (2) for each action a ∈ IP ∪ OP , loc(a) = loc(rIO(a)), and (3) for each t ∈ TP and for
each x ∈ N+, if t[x] 6= ⊥, then rT (t)[x] = rIO(t[x]).

Now, we can define the solvability of a crash problem P using itself as follows. We say that a crash
problem P is self-implementable in environment E , denoted P �E P , iff there exists a renaming P ′ of P
such that P �E P ′.

5.3 Using and Solving AFDs

Since an AFD is simply a kind of crash problem, we have automatic definitions for the following notions.
(1) A distributed algorithm A solves an AFD D in environment E . (2) A distributed algorithm A solves a
crash problem P using an AFD D in environment E . (3) An AFD D is sufficient to solve a crash problem P
in environment E . (4) A distributed algorithm A solves an AFD D using a crash problem P in environment
E . (5) A crash problem P is sufficient to solve an AFD D in environment E . (6) A distributed algorithm
A solves an AFD D′ using another AFD D in environment E . (7) An AFD D is sufficient to solve another
AFD D′ in environment E . (8) An AFD D is self-implementable in environment E .

We remark that when we talk about solving an AFD, the environment E has no output actions because
the AFD has no input actions except for Î , which are inputs from the crash automaton. Therefore, we have
the following lemma.

Lemma 1. For a crash-problem P , an AFD D, and an environment E , if P �E D, then for any other
environment E ′ with the same external signature as E , P �E ′ D.

Consequently, when we refer to an AFD D being solvable using a crash problem (or an AFD) P , we
generally omit the reference to the environment automaton and simply say that P is sufficient to solve D;
we denote this relationship by P � D. Analogously, when we refer to a D being unsolvable using P , we
denote this relationship by P 6� D.

9

Finally, if an AFD D is sufficient to solve another AFD D′, then we state that D is stronger than D′,
and we denote that D � D′. If D � D′, but D′ 6� D, then we say that D is strictly stronger than D′, and
we denote that D � D′.

Next, we consider reflexivity of the � relation between AFDs. We show that for every AFD D, D � D
must be true; that is, every AFD is self-implementable.

6 Self-Implementability of AFDs

Within the traditional definitions of failure detectors, it is well known that not all failure detectors self-
implementable (see [6] for a detailed discussion). In contrast we show that every AFD is self-implementable.
Recall that an AFD D is self-implementable, denoted D � D, iff there exists a renaming D′ of D such that
D � D′.

Algorithm For Self-Implementability. We provide a distributed algorithm Aself that demonstrates
self implementability of an arbitrary AFD D. First, we fix an arbitrary AFD D ≡ (Î , OD, TD). Let
D′ ≡ (Î , OD′ , TD′) be a renaming of D. Let rIO : OD → OD′ and rT : TD → TD′ be the bijections that
define the renaming. That is, for each t ∈ TD and for each x ∈ N+, if t[x] 6= ⊥, then rT (t)[x] = rIO(t[x]).
The Aself automaton leverages the information provided by AFD D to solve D′.

The distributed algorithm Aself is a collection of automata Aself
i , one for each location i ∈ Π. Each

automaton Aself
i has the following signature. (1) An input action crashi which is the output action from

the crash automaton. (2) The set of input actions Fi = {d|d ∈ OD ∧ (loc(d) = i)} which are outputs of the
failure-detector automaton D. (3) The set of output actions F ′i = {rIO(d)|d ∈ Fi}.

At each location i, Aself
i maintains a queue fdq of elements from the range OD; fdq is initially empty.

When event d ∈ Fi occurs at location i,Aself
i adds d to the queue fdq. The precondition for action d′ ∈ F ′i

at i is that the head of the queue fdq at i is r−1
IO(d′). When this precondition is satisfied, and event d′ occurs

at i, the effect of this event is to remove r−1
IO(d′) from the head of fdq. Finally, when event crashi occurs,

the effect of this event is to disable the output actionsF ′i permanently. The pseudocode forAself is available
in Algorithm 1.

Algorithm 1 Algorithm for showing self-implementability of asynchronous failure-detector.
The automaton Aself

i at each location i.
Signature:

input di : OD at location i, crashi

output d′i : OD′ at location i
Variables:

fdq: queue of elements from OD , initially empty
failed: Boolean, initially false

Actions:
input crash
effect

failed := true
input d
effect

add d to fdq
output d′

precondition
(¬failed) ∧ (fdq not empty) ∧ (r−1

IO(d′) = head(fdq))
effect

delete head of fdq

Correctness. The proof of correctness follows from closure under sampling and closure under con-
strained reordering, but is omitted due to space constraints.

10

Theorem 2. The distributed algorithm Aself uses AFD D to solve a renaming of D.

From Theorem 2 we have the following as a corollary.

Corollary 3. Every AFD is self-implementable: for every AFD D, D � D.

An immediate consequence of Corollary 3 is that we can take the union of the relation� between distinct
AFDs and the � relation comparing an AFD and claim that the � relation is transitive. This is captured in
the following lemma.

Lemma 4. Given AFDs D, D′, and D′′, if D � D′ and D′ � D′′, then D � D′′.

7 AFDs and Other Crash Problems

In this section, we explore the relative solvability among AFDs and the consequences of such relative solv-
ability on other crash problems that can be solved using AFDs. Section 7.1 shows that if an AFD D′ is
strictly stronger than another AFD D, then the set of problems that D′ can solve in a given environment
is a strict superset of the set of problems solvable by D in the same environment. Section 7.2 revisits the
traditional notion of a weakest failure detector for a problem and defines what it means for an AFD to be a
weakest to solve a crash problem in a given set of environments. We also introduce the notion of an AFD
begin representative of a problem in a given set of environments. Section 7.3 shows that a large class of
problems, which we call finite problems, do not have a representative AFD.

7.1 Comparing AFDs

Traditionally, as defined in [4], a failure detector D is stronger than a failure detector D′ if D is sufficient to
solve D′. This definition immediately implies that every problem solvable in some environment using D′ is
also solvable in the same environment using D. However, this definition does not imply the converse; if in
every environment every problem solvable using D′ is also solvable using D, then it is not necessarily the
case that D is stronger than D′.

We demonstrate that in our framework, the converse must also be true; that is, given two AFDs D and
D′, every crash problem solvable using D′ in a some environment is also solvable using D in the same
environment iff D is stronger than D′. This is captured by the following theorem:

Theorem 5. For every pair of AFDs D and D′, D � D′ iff for every crash problem P , and every environ-
ment E , D′ �E P → D �E P .

Proof. The proof is immediate for the case where D = D′. For the remainder of the proof we fix D and D′

to be distinct AFDs.
Claim 1: Let D � D′. Fix P to be a crash problem and E to be an environment. If D′ �E P , then

D �E P .

Proof. Assume D′ �E P . There exists a distributed algorithm AP such that for every fair trace t of
the composition of AP , with the crash automaton, the channel automata, and E , if t|Î∪OD′

∈ TD′ , then
t|IP∪OP

∈ TP .
SinceD � D′, there exists a distributed algorithmAD′ such that for every fair trace t of the composition

of AD′ with the crash automaton and the channel automata, t|Î∪OD
∈ TD ⇒ t|Î∪OD′

∈ TD′ . Let A be a

distributed algorithm where each Ai at location i is obtained by composing AP
i and AD′

i . Let TA be the
set of all fair traces t of the composition of A with the crash automaton and the channel automata such that
t|Î∪OD

∈ TD. By the construction of AD′ , we know that for each such trace t, t|Î∪OD′
∈ TD′ . Then, by the

construction of AP , we have that t|IP∪OP
∈ TP , which immediately implies D �E P .

11

Claim 2: If, for every crash problem P and every environment E , D′ �E P → D �E P , then D � D′.

Proof. Suppose D′ �E P → D �E P , for every crash problem P and environment E . Specifically,
D′ � D′ → D � D′. Applying Corollary 3, we conclude D � D′.

The theorem follows directly from Claims 1 and 2.

Corollary 6. Given two AFDsD andD′ whereD � D′, there exists a crash problem P and an environment
E such that D �E P , but D′ 6�E P ; that is, there exists some problem P and an environment E such that D
is sufficient to solve P in E , but D′ is not sufficient to solve P in E .

Proof. If D � D′, then D′ 6� D. By the contrapositive of Theorem 5, there exists a problem P and an
environment E such that D �E P and D′ 6�E P .

7.2 Weakest and Representative AFDs

The issue of weakest failure detectors for problems was originally tackled in [4] in which a failure detectorD
is defined as a weakest to solve a problem P if the following two conditions are satisfied: (1) D is sufficient
to solve P , and (2) any failure detector D′ that is sufficient to solve P is stronger than D. This definition
can be directly translated to our framework as follows.

An AFDD is weakest for a crash problem P in an environment E iff (1)D �E P and (2) for every AFD
D′ such that D′ �E P , D′ � D. An AFD D is a weakest for a crash problem P in a set of environments Ê
iff for every E ∈ Ê , D is weakest for P in E .

There have been many results that demonstrate weakest failure detectors for various problems. The proof
techniques used to demonstrate these results have been of two distinct styles. The first proof technique was
first proposed in [4] and is as follows. To show thatDP , which is sufficient to solve P , is the weakest failure
detector to solve problem P it considers an arbitrary failure detectorD that is sufficient to solve the problem
P using an algorithm A. It then constructs a distributed algorithm that exchanges the failure detector D’s
outputs and then continually simulates runs of A using the set of D’s outputs available so far. From these
simulations, an admissible output for DP is extracted. This proof technique has been used to determine a
weakest failure detector for the so-called one-shot problems such as consensus [4] and k-set consensus[11].

The second proof technique is simpler and follows from mutual reducibility. To show that DP , which is
sufficient to solve P , is the weakest failure detector to solve problem P , it uses a solution to P as a ‘black
box’ to design a distributed algorithm whose outputs satisfy DP . This proof technique has been used to
determine a weakest failure detector for long-lived problems such as mutual exclusion [9, 2], contention
managers [12], and dining philosophers [22].

A natural question is, “does the mutual-reducibility based proof technique work for determining weakest
failure detectors for one-shot problems?” We answer this question negatively by introducing the notion of a
representative AFD.

Representative AFD. Informally, an AFD is representative of a crash problem if the AFD can be used
to solve the crash problem and conversely, a solution to the problem can be used to solve (or implement) the
AFD.

Formally, an AFD D is representative of a problem P in an environment E iff D �E P and P � D.
An AFD D is representative of problem P in a set of environments Ê iff for every environment E ∈ Ê , D is
representative of P in E .

Observe that if an AFD D is representative of a crash problem P in Ê , then D is also a weakest AFD to
solve P in Ê . However, the converse need not be true. Specifically if D is a weakest AFD to solve problem
P in Ê , it is not necessary for D to be representative of P in Ê .

12

In particular, we highlight that the weakest failure detector results in [23, 22, 13] establish that the
eventually perfect failure detector is representative for eventually fair schedulers, dining under eventual
weak exclusion, and boosting obstruction-freedom to wait-freedom, respectively.

Next, we show that a large class of problems (which we call finite problems) do not have a representative
failure detector despite having a weakest failure detector.

7.3 Finite Problems and Representative AFDs

In this subsection we define the notion of a finite problem, which captures what is often referred to as one-
shot problems. Informally speaking, finite problems are those that have a bounded number of interactions
with the environment. Examples of finite problems include consensus, leader election, terminating reliable
broadcast, and k-set agreement. Examples of problems that are not finite problems include mutual exclusion,
Dining Philosophers, synchronizers, and other long-lived problems.

Before we define finite problems we need some auxiliary definitions. A problem P is crash independent
if, for every finite prefix tpre of a trace t ∈ TP , tpre|IP∪OP \Î is a finite prefix of some t′ ∈ TP such that t′|Î
is empty. In other words, for every prefix tpre of every trace t ∈ TP , the subsequence of tpre consisting of
exactly the non-crash events is a prefix of some crash-free trace in TP . For each t ∈ TP , let len(t) denote
the length of the subsequence of t that consists of all non-crash events. A problem P has bounded length if
there exists a bP ∈ N+ such that, for every t ∈ TP , len(t) ≤ bP .

If a problem P is crash independent and has bounded length we say that P is a finite problem.
Before we state the main theorem of this section, recall that an unsolvable problem is one that cannot be

solved in a purely asynchronous system (i.e. without failure detectors).

Theorem 7. If P is a finite problem that is unsolvable in an environment E then P does not have a repre-
sentative AFD in E .

Proof sketch. Suppose by contradiction that P is a finite problem that is unsolvable in an environment
E , and some AFD D is representative of P in E . Therefore, there exists a distributed algorithm AP that uses
P to solve D, and conversely there exists a distributed algorithm AD which uses D to solve P in E . First
we state the following lemma.

Lemma 8. There exists a crash-free finite execution αref (and its trace tref) of the composition of AP with
the crash automaton and the channel automaton where the following is true. (1) tref |IP∪OP

∈ TP . (2)
There are no messages in transit in the final state of αref . (3) For every fair execution α′ that extends αref ,
the suffix of α′ following αref has no events in IP ∪OP \ Î .

Before proving Lemma 8, we show why it implies the theorem. From Lemma 8 and the crash indepen-
dence of P , it follows that for any fair execution α′ (and its associated trace t′) of the composition of AP

with the crash automaton and the channel automata that extends αref is such that t′|IP∪OP
∈ TP . Since AP

solves D using P we have that t′|ID∪OD
∈ TD.

For each i ∈ Π, let si be the state of process automaton at i at the end of αref and let fi denote the
sequence of events from OD at location i in αref . Next, we describe a distributed algorithm A′ which, in
every fair execution, guarantees that each process i will first output the sequence fi and then behave as AP

would behave when starting at state si.
The distributed algorithm A′ is identical to AP except in the following ways at each i ∈ Π. (1) A′i has

an additional variable fdqi that is a queue of failure-detector outputs and its initial value is fi. (2) The initial
values of all other variables in A′i corresponds to the state si. (3) For every output action ai ∈ OD at i, A′i
has two actions int(ai) and ai: (a) int(ai) is an internal action whose associated state transitions are the
same as action ai in AP

i except that, additionally, int(ai) enqueues the element ai to fdqi. (b) ai is enabled

13

when element ai is at the head of fdqi . The effect of ai is to delete the element ai from the head of fdqi.
(4) A′i does not contain any action from IP ∪OP \ Î .

By construction and the FIFO property of the queues inA′ we have the following lemma (proof omitted).

Lemma 9. For every fair execution α (and its trace t) of the composition of A′ with the crash automaton,
and the channel automata there exists a fair execution αAP (and its trace tAP) of the composition of AP

with the crash automaton, and the channel automata where the following is true. (1) tAP |IP∪OP
∈ TP . (2)

αref is a prefix of αAP . (3) t|Î∪OD
is constrained reordering of a sampling of tAP |Î∪OD

.

Lemma 9 implies that any fair execution α of A′ composed with the channel automata and the crash
automaton produces a trace t such that t|ID∪OD

∈ TD, and therefore A′ solves D. Therefore, by composing
A′i and AP

i (and their respective channel automata) at each location i , we obtain a distributed algorithm
that solves P in E ; that is, P is solvable in E . But this contradicts the assumption that P is unsolvable in E ,
which completes the proof of Theorem 7.

Proof of Lemma 8. Let σ be the set of all fair executions of the composition of AP with the crash
automaton and the channel automata such that for any trace t produced by an execution in σ it is true that
t|IP∪OP

∈ TP . Letαmax be an execution in σ which produces the trace tmax that maximizes len(tmax|IP∪OP
).

Let αs.pre be the shortest prefix of the execution αmax which contains all events of IP ∪ OP . Since P
is bounded length it follows that such a prefix exists and is finite, and furthermore, any extension of αs.pre

does not include any events from IP ∪ OP \ Î because len(tmax|IP∪OP
) is maximal. We extend αs.pre to

another finite execution αpre by appending receive events for every message that is in transit at the end of
αs.pre such so that no message is in transit (and the channels are ‘quiescent’) at the end of αpre

Let ΠC be the set of crashed locations in αpre, and observe that by assumption after the first crashi event
in αpre, proc(i) does not perform any outputs in αpre. Let αref be identical to αpre except that all crash
events have been removed. For a location i /∈ ΠC the executions αpre and αref are indistinguishable, and
therefore proc(i) must produce the same output in both executions. For a location i ∈ ΠC the executions
αpre and αref are indistinguishable up to where the first event crashi occurs in αpre, and after that point
there is no other output at i in αpre; therefore proc(i) must produce the same output in both executions.
Thus, αref is a finite crash-free execution satisfying the lemma.

8 Weakest AFD for Consensus

In a seminal result [4], Chandra et. al. established that Ω is a weakest failure detector to solve crash-tolerant
binary consensus. Recasting the arguments from [4] in our modeling framework yields a simpler proof. The
proof is split into two parts, which we discuss separately.

In the first part, as in [4], we construct a tree of possible executions of an AFD-based solution to consen-
sus. However, in [4], each edge of such a tree corresponds to a single event whereas in our framework, each
edge corresponds to a task, which represents a collection of events. This allows us to reduce the number
of cases we must analyze. Specifically, we look for transitions from a bivalent to a monovalent execution.2

Furthermore, the proof in [4] considers a forest of executions, where each tree in the forest corresponds to
a single configuration of the inputs to consensus. In contrast, our framework treats inputs for consensus as
events that are performed by the environment automaton. Therefore, we need to analyze only a single tree
of executions. These, two factors simplify the analysis of AFD-based consensus significantly and yield the
following (paraphrased) claim, which may be of independent interest.

2Briefly, an execution of the system is v-valent (where v is either 0 or 1) if the only possible decision at each location, in the
execution or any fair extension of the execution, is v. A v-valent execution is monovalent. If an execution is not monovalent, then
it is bivalent.

14

Claim. In the tree of all possible executions of a system solving consensus using an AFD, the events
responsible for the transition from a bivalent to a monovalent execution occur at a live location.

In the second part, we use the above claim to show that Ω is a weakest AFD to solve consensus. The
arguments are similar to the ones in [4], but simplified by the above claim.

As in [4], we present a distributed algorithm AΩ that receives the outputs from the AFD D (which
is sufficient to solve consensus) and solves Ω. The process automata exchange the AFD outputs among
themselves. Based on their current knowledge of the AFD outputs at various locations, AΩ

i at each location
i continually determines a finite “canonical” FD sequence, denoted ti, which is a prefix of some sequence
in TD. Furthermore, as the execution proceeds, AΩ

i at each location i obtains increasingly longer sequences
of AFD outputs from other locations. Thus, at each live location i, AΩ

i constructs increasingly longer
canonical FD sequences ti. Eventually, ti at all live locations i converge to a common sequence tref ∈ TD.
Furthermore, for every finite prefix tpre of tref , eventually and permanently, the sequences ti at live locations
i are extensions of tpre.

Periodically, at each location i, AΩ
i uses its canonical sequence ti to construct a finite tree of executions

of depth di, where di is the length of ti. From this tree, it determines the “earliest” transition from a
bivalent execution to a monovalent execution of consensus. The location of the process associated with this
transition is provided as the output of Ω at i. Note that the earliest such transition in the tree of executions
is determined uniquely by the nodes within some finite depth (say) d of the tree. Let tpre.d be the prefix of
tref of length d. Eventually and permanently, the canonical sequences ti at all live locations i are extensions
of tpre.d. Therefore, eventually and permanently, AΩ

i at every live location i determines the same “earliest”
transition from a bivalent execution to a monovalent execution of consensus. From the claim established in
the first part, we know that the events responsible for the “earliest” transition from a bivalent to a univalent
execution occur at a some live location (say) l. Therefore, eventually and permanently, AΩ

i at every live
location i provides a common correct location l as the output of the Ω. Thus AΩ implements the Ω using D.
Thus, we show that Ω is a weakest AFD for consensus.

9 Discussion

Query-Based Failure Detectors. Our framework models failure detectors as crash problems that interact
with process automata unilaterally. In contrast, many traditional models of failure detectors employ a query-
based interaction [4, 17]. Since the inputs to AFDs are only the crash events, the information provided by
AFDs can only be about process crashes. In contrast, query-based failure detectors receive inputs from the
crash events and the process automata. The inputs from process automata may “leak” information about
other events in the system to the failure detectors We illustrate the ability of query-based failure detectors to
provide such additional information with the following example.

Applying Theorem 7 we know that consensus does not have a representative AFD. However, if we
consider the universe of query-based failure detectors, we see that consensus has a representative query-
based failure detector, which we call a participant failure detector. A participant failure detector outputs the
same location ID to all queries at all times and guarantees that the process automaton whose associated ID
is output has queried the failure detector at least once.

It is easy to see how we can solve consensus using the participant failure detector. Each process au-
tomaton sends its proposal to all the process automata before querying the failure detector. The output of
the failure detector must be a location whose process automaton has already sent its proposal to all the pro-
cess automata. Therefore, each process automaton simply waits to receive the proposal from the process
automaton whose associated location ID is output by the failure detector and then decide on that proposal.

Solving participant failure detector from a solution to consensus is also straightforward. The failure
detector implementation is as follows. Upon receiving a query, the process automaton inputs its location ID

15

as the proposal to the solution to consensus. Eventually, the consensus solution decides on some proposed
location ID, and therefore, the ID of some location whose process automaton queried the failure detec-
tor implementation. In response to all queries, the implementation returns the location ID decided by the
consensus solution.

Thus, we see that query-based failure detectors may provide information about events other than crashes.
Furthermore, unlike representative failure detectors, a representative query-based failure detector for some
problem P is not guaranteed to be a weakest failure detector for problem P . In conclusion, we argue that
unilateral interaction for failure detectors is more reasonable than a query-based interaction.

Future Work. Our work introduces AFDs, but the larger impact of AFD-based framework on the ex-
isting results from traditional failure-detector theory needs to be assessed. The exact set of failure detectors
than can be specified as AFDs remains to determined. It remains to be seen if weakest failure detectors for
various problems are specifiable as AFDs, and if not, then the weakest AFDs to solve these problems are yet
to be determined. We are yet to investigate if the results in [17] hold true for AFDs and if every problem (as
defined in [17]) has a weakest AFD. The exact characterization of problems that have a representative AFD
and the problems that do not have a representative AFD is unknown.

10 Acknowledgments

This work is supported in part by NSF Award Numbers CCF-0726514, CCF-0937274, and CNS-1035199,
and AFOSR Award Number FA9550-08-1-0159. This work is also partially supported by Center for Science
of Information (CSoI), an NSF Science and Technology Center, under grant agreement CCF-0939370.

References

[1] M. K. Aguilera, S. Toueg, and B. Deianov. Revisiting the weakest failure detector for uniform reliable
broadcast. In Proc. of 13th International Symposium on Distributed Computing, pages 19–34, 1999.

[2] V. Bhatt, N. Christman, and P. Jayanti. Extracting quorum failure detectors. In Proc. of 28th ACM
symposium on Principles of distributed computing, pages 73–82, 2009.

[3] V. Bhatt and P. Jayanti. On the existence of weakest failure detectors for mutual exclusion and k-
exclusion. In Proc. of the 23rd International Symposium on Distributed Computing, pages 311–325,
2009.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
Journal of the ACM, pages 685–722, 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM,
43(2):225–267, 1996.

[6] B. Charron-Bost, M. Hutle, and J. Widder. In search of lost time. Information Processing Letters,
2010.

[7] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. A realistic look at failure detectors. In Proc. of
International Conference on Dependable Systems and Networks, pages 345–353, 2002.

[8] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The
weakest failure detectors to solve certain fundamental problems in distributed computing. In Proc. of
23rd ACM Symposium on Principles of Distributed Computing, pages 338–346, 2004.

16

[9] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and P. Kouznetsov. Mutual exclusion in asynchronous
systems with failure detectors. Journal of Parallel and Distributed Computing, pages 492–505, 2005.

[10] C. Fetzer, F. Tronel, and M. Raynal. An adaptive failure detection protocol. In Proc. of the Pacific Rim
International Symposium on Dependable Computing, pages 146–153, 2001.

[11] E. Gafni and P. Kuznetsov. The weakest failure detector for solving k-set agreement. In Proc. of 28th
ACM symposium on Principles of distributed computing, pages 83–91, 2009.

[12] R. Guerraoui, M. Kapalka, and P. Kouznetsov. The weakest failure detectors to boost obstruction-
freedom. Distributed Computing, pages 415–433, 2008.

[13] R. Guerraoui, M. Kapalka, and P. Kouznetsov. The weakest failure detectors to boost obstruction-
freedom. Distributed Computing, pages 415–433, 2008.

[14] R. Guerraoui and P. Kouznetsov. On the weakest failure detector for non-blocking atomic commit. In
Proc. of 17th IFIP World Computer Congress - TC1 Stream / 2nd IFIP International Conference on
Theoretical Computer Science: Foundations of Information Technology in the Era of Networking and
Mobile Computing, pages 461–473, 2002.

[15] R. Guerraoui and P. Kouznetsov. The weakest failure detector for non-blocking atomic commit. Tech-
nical report, EPFL, 2003.

[16] J. Y. Halpern and A. Ricciardi. A knowledge-theoretic analysis of uniform distributed coordination
and failure detectors. In Proc. of 18th ACM symposium on Principles of distributed computing, pages
73–82, 1999.

[17] P. Jayanti and S. Toueg. Every problem has a weakest failure detector. In Proc. of 27th ACM symposium
on Principles of distributed computing, pages 75–84, 2008.

[18] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[19] S. M. Pike, S. Sastry, and J. L. Welch. Failure detectors encapsulate fairness. In 14th International
Conference Principles of Distributed Systems, pages 173–188, 2010.

[20] S. Rajsbaum, M. Raynal, and C. Travers. Failure detectors as schedulers (an algorithmically-reasoned
characterization). Technical Report 1838, IRISA, Université de Rennes, France, 2007.

[21] S. Rajsbaum, M. Raynal, and C. Travers. The iterated restricted immediate snapshot model. In Proc
of 14th International Conference on Computing and Combinatorics, pages 487–497, 2008.

[22] S. Sastry, S. M. Pike, and J. L. Welch. The weakest failure detector for wait-free dining under eventual
weak exclusion. In Proc. of 21st ACM Symposium on Parallelism in Algorithms and Architectures,
pages 111–120, 2009.

[23] Y. Song, S. M. Pike, and S. Sastry. The weakest failure detector for wait-free, eventually fair mutual
exclusion. Technical Report TAMU-CS-TR-2007-2-2, Texas A&M University, 2007.

[24] N. C. Vibhor Bhatt and and P. Jayanti. Extracting quorum failure detectors. In Proc. of 28th ACM
Symposium on Principles of Distributed Computing, pages 73–82, 2009.

17

