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Abstract. We argue that failure detectors encapsulate fairness. Fair-
ness is a measure of the number of steps a process takes relative to
another processes and/or messages in transit. As evidence we specify
fairness-based message-passing system models that are the weakest to
implement the failure detectors from [1].

Failure Detectors and Partial Synchrony. Failure detectors [1], system ser-
vices that provide potentially unreliable information about process crashes in an
otherwise asynchronous system, are believed to encapsulate partial synchrony [3].
That is, given a partially synchronous system model M , it is possible to replace
M with an asynchronous system augmented with an appropriate failure detector
D (that is implementable in M) such that all the problems solvable in M are
also solvable in the asynchronous system augmented with D. Hence, the pursuit
to find the ‘weakest’ system models to implement various failure detectors.

Such pursuits have met with limited success, in part, because many such
system models are specified with respect to real-time constraints on communi-
cation and computation. We argue that such ‘weakest’ system models should be
specified as restrictions on ‘fairness’: a measure of the number of steps executed
by a process relative to other events in the system.

Failure Detector Classes. We consider four failure detector classes from [1]:

– Perfect failure detector: (denoted P) never suspects live processes and even-
tually suspects all crashed processes forever.

– Strong failure detector (denoted S) never suspects some correct process and
eventually suspects all crashed processes forever.

– Eventually Perfect failure detector (denoted ♦P) eventually never suspects
correct processes and suspects all crashed processes forever.

– Eventually Strong failure detector (denoted ♦S) eventually never suspects
some correct process and suspects all crashed processes forever.
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Fairness. We focus on fairness properties that refer to both the computation
and the communication that takes place in executions. Computational fairness
specifies the number of steps executed by processes relative to each other; com-
municational fairness specifies the number of steps executed by the recipient of
a message while that message is in transit.

Computational Fairness. A process i is said to be k-proc-distinguished if all
processes are fair with respect to i. Specifically, in each execution segment where
a process j takes k + 1 steps, then either (a) i takes at least one step, or (b) i is
crashed. If all processes are fair with respect to i only after some unknown global
stabilization time (GST), then i is said to be eventually k-proc-distinguished.
Note that while other processes may be fair with respect to a proc-distinguished
process i, process i need not be fair with respect to other processes; i.e., a proc-
distinguished process may take an unbounded number of steps in the duration
between two consecutive steps by a non-proc-distinguished process. This is an
important distinction between computational fairness and bounded relative pro-
cess speeds defined in [3]. Bounded relative process speeds may be viewed as a
special case where every process is (eventually) k-proc-distinguished.

Communicational Fairness. A process i is said to be d-com-distinguished if
all other processes are fair with respect to messages from i. More precisely, for
every message m sent by i to j, the recipient j takes no more than d steps
while m is in transit and i is not crashed. Note that if i crashes while m is
in transit to j, then the bound d does not apply. If all processes are fair with
respect to messages from i only after some unknown GST, then i is said to be
eventually d-com-distinguished. Like computational fairness, it is not necessary
for a d-com-distinguished process i to be fair with respect to messages sent from
non-com-distinguished processes to i. That is, i may take an unbounded number
of steps while a message from a non-com-distinguished process is in transit to i.

Fairness-Based Partial Synchrony. We present four partially synchronous
models that specify fairness properties rather than real-time behavior.

1. All Fair (AF) system model is specified as follows: in every run, all processes
are both k-proc-distinguished and d-com-distinguished, for known k and d.

2. Some Fair (SF) system model is specified as follows: in every run, some
correct process x is both k-proc-distinguished and d-com-distinguished, for
known k and d.

3. Eventually All Fair (♦AF) system model is specified as follows: for each run,
there exists a (potentially unknown) time after which the system behaves like
AF .

4. Eventually Some Fair (♦SF) system model is specified as follows: for each
run, there exists a (potentially unknown) time after which the system be-
haves like SF .

Weakest System Models. Our primary result states that AF , SF , ♦AF , and
♦SF specify the exact amount of fairness encapsulated by P, S, ♦P, and ♦S,
respectively. In other words, AF , SF , ♦AF , and ♦SF are the ‘weakest’ system
models to respectively implement P, S, ♦P, and ♦S with any number of crashes.



We establish this result is as follows. First, we present a construction that uses
a failure detector from [1] in an otherwise asynchronous system to schedule dis-
tributed applications such that each process executes its application steps fairly
with respect to other processes (and messages). The fairness properties guaran-
teed by the scheduler depend on the available failure detector. By employing P,
S, ♦P, or ♦S, the scheduler provides fairness guarantees specified by AF , SF ,
♦AF , or ♦SF , respectively. This shows that the failure detectors encapsulate at
least as much fairness as is specified in the corresponding fairness-based system
models. For the other direction, we present an algorithm which implements a
failure detector on top of these fairness-based systems. When this algorithm is
deployed inAF , SF , ♦AF , or ♦SF , it implements P, S, ♦P, or ♦S, respectively.
Thus, we show that these failure detectors encapsulate no more guarantees on
fairness than what is provided by the corresponding fairness-based systems.

Discussion. The notion of ‘capturing the power’ of a failure detector was ex-
plored in [5] for shared-memory systems. Our work, which focuses on message-
passing systems, deviates from [5] in three significant ways. (a) The ‘power’ of a
failure detector is different in shared-memory and message-passing systems. For
example, in environments with arbitrary number of process crashes, the weak-
est failure detectors for consensus and k-set agreement are different in shared-
memory and message-passing systems. Hence, ‘capturing the power’ of a failure
detector in message-passing systems merits separate investigation. (b) Asyn-
chronous systems under message passing are weaker than under shared memory
because the quorum failure detector is necessary to implement read/write atom-
icity with message passing. Hence, the results from [5] need not carry over to
message-passing systems. (c) We address the synchronism captured by perpet-
ually accurate oracles (in addition to eventually accurate ones) and resolve the
issue of synchronous-systems-vs.-perfect-failure-detector [2] whereas the results
in [5] specify fairness constraints only for classes of eventually accurate oracles.

The full version of the paper can be found at [4].
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