
Wait-Free Dining Under Eventual Weak Exclusion

Scott M. Pike,? Yantao Song, and Srikanth Sastry

Texas A&M University
Department of Computer Science

College Station, TX 77843-3112, USA
{pike,yantao,sastry}@cs.tamu.edu

Abstract. We present a wait-free solution to the generalized dining philosophers
problem under eventual weak exclusion in environments subject to crash faults.
Wait-free dining guarantees that every correct hungry process eventually eats,
regardless of process crashes. Eventual weak exclusion (3WX ) actually allows
scheduling mistakes, whereby mutual exclusion may be violated finitely-many
times; for each run, however, there must exist a convergence point after which live
neighbors never eat simultaneously. Wait-free dining under 3WX is particularly
useful for synchronization tasks where eventual safety is sufficient for correctness
(e.g., duty-cycle scheduling, self-stabilizing daemons, and contention managers).
Unfortunately, wait-free dining is unsolvable in asynchronous systems. As such,
we characterize sufficient conditions for solvability under partial synchrony by
presenting a wait-free dining algorithm for 3WX using a local refinement of the
eventually perfect failure detector 3P1.

Key words: Dining Philosophers, Failure Detectors, Wait-Freedom

1 Introduction

The dining philosophers problem (or dining for short) is a fundamental scheduling
paradigm in which processes (called diners) periodically require exclusive access to a
fixed subset of shared resources [1, 2]. Each diner is either thinking, hungry, or eating.
These states correspond to three basic phases of computation: executing independently,
requesting resources, and utilizing shared resources in a critical section, respectively.
Potential scheduling conflicts are modeled by a conflict graph in which diners with
overlapping resource requirements are connected as neighbors. As such, dining is a
generalization of the mutual exclusion problem, which corresponds to the special case
where the conflict graph forms a clique.

Wait-free dining guarantees that every correct hungry process eventually eats, even
if other processes fault by crashing. The solvability of wait-free dining depends on two
primary factors: (1) the degree to which concurrency is restricted among eating diners,
and (2) the degree to which crash faults can be detected reliably. The former depends
on the applicable safety specification for local exclusion, while the latter depends on
the degree of synchrony in the system.
? This work was supported by the Advanced Research Program of the Texas Higher Education

Coordinating Board under Project Number 000512-0007-2006.



Safety specifications restrict concurrency among eating diners. For example, strong
exclusion prohibits any pair of conflicting neighbors from eating simultaneously, even if
one of them has crashed. This safety property models resources that can be permanently
corrupted by process crashes. Unfortunately, wait-free dining under strong exclusion is
vacuously unsolvable. To see why, consider any diner that crashes while eating. Wait-
freedom guarantees that every correct hungry neighbor will eventually eat, but strong
exclusion prohibits the same. Moreover, this result is independent of whether crashes
can be detected reliably.

A less restrictive model called weak exclusion prohibits only live neighbors from
eating simultaneously. This safety property models resources that are recoverable or
eventually stateless after crash faults. For example, consider a wireless network where
diners broadcast messages over a subset of shared frequencies. If some diner crashes
while eating, then the current transmission terminates. As such, the frequency allocated
to the crashed diner becomes available for subsequent use by neighboring diners.

Wait-free dining for weak exclusion is actually solvable, but it requires substantial
timing assumptions, or, alternatively, access to sufficiently powerful failure detectors.
A failure detector can be viewed as a distributed system service that can be queried
like an oracle for information about process crashes [3]. Oracle-based algorithms are
decoupled from the underlying timing assumptions about partial or even full synchrony
necessary to implement such fault-detection capabilities in practice. Recent results on
fault-tolerant mutual exclusion indicate that wait-free dining under weak exclusion is
solvable in systems augmented with Trusting failure detectors — a relatively powerful
class of oracles that can reliably detect certain crashes [4].

Unfortunately, trusting oracles require significant assumptions about network tim-
ing parameters to be implemented in practice. By contrast, less powerful oracles that
are implementable in more practical models of partial synchrony — such as those for
solving fault-tolerant consensus — are too weak to solve wait-free dining under weak
exclusion. This problem remains unsolvable even for oracles of intermediate strength.
For example, the eventually perfect failure detector 3P always suspects crashed pro-
cesses, and eventually stops suspecting correct processes [3]. This oracle, which can
make finitely many false-positive mistakes in any run, is more than sufficient to solve
fault-tolerance consensus. Still, no 3P-based algorithm can solve wait-free dining for
weak exclusion; neighbors of any crashed diner will always be able to starve [5].

Our contribution examines a practical model of exclusion for wait-free dining which
is solvable under modest assumptions of partial synchrony. In particular, we explore
dining under eventual weak exclusion, and show that it is solvable using the afore-
mentioned oracle 3P . Eventual weak exclusion (abbreviated 3WX hereafter) permits
finitely-many scheduling mistakes whereby conflicting diners eat together. For each
run, however, there exists a time after which no two live neighbors eat simultaneously.

The time to convergence may be unknown, and it may also vary from run to run.
Nevertheless, 3WX is sufficiently powerful to serve as a useful scheduling abstraction.
For example, 3WX models recoverable resources where sharing violations precipitate
at worst repairable (transient) faults. 3WX has received considerable attention recently
in the context of shared-memory contention management [6], conflict managers for self-
stabilizing systems [7], as well as wait-free eventually fair distributed daemons[8].



2 Background and Technical Framework

Although originally proposed by Dijkstra for a ring topology [1], dining philosophers
was later generalized by Lynch for overlapping local exclusion problems on arbitrary
graphs [2]. A dining instance is modeled by an undirected conflict graph DP = (Π,E),
where each vertex p ∈ Π represents a diner, and each edge (p, q) ∈ E represents a set
resource conflicts between neighbors p and q.

Each diner is either thinking, hungry, or eating, but initially all diners are thinking.
Diners may think forever, but they can also become hungry at any time. By contrast,
eating is always finite (but not necessarily bounded). Hungry neighbors are said to be in
conflict, because they compete for shared but exclusive resources. A correct solution to
wait-free dining under eventual weak exclusion (3WX ) is an algorithm that schedules
diner transitions from hungry to eating, subject to the following two requirements:

Safety: Every run has an infinite suffix where no two live neighbors eat simultaneously.

Progress: Every correct hungry diner eventually eats, regardless of process crash faults.

Progress ensures fairness among hungry diners. In particular, dining solutions are
not permitted to starve hungry processes by never scheduling them to eat. In the pres-
ence of crash faults, a dining algorithm that satisfies progress is called wait-free [9]. The
safety requirement of eventual weak exclusion permits finitely many scheduling mis-
takes. A mistake occurs when two live neighbors are scheduled to eat simultaneously.

Computational Model. We consider asynchronous environments where message
delay, clock drift, and relative process speeds are unbounded. A system is modeled by
a set of n distributed processes Π = {p1, p2, . . . , pn} which communicate only by
asynchronous message passing. We assume that the dining conflict graph is a subgraph
of the communication graph, so that each pair of neighboring diners is connected by
reliable FIFO channels.

Fault Patterns. Processes may fault only by crashing. A crash fault occurs when
a process ceases execution (without warning) and never recovers [10]. A fault pattern
F models the occurrence of crash faults in a given run. Specifically, F is a function
from the global time range T to the powerset of processes 2Π , where F (t) denotes the
subset of processes that have crashed by time t. Since crash faults are permanent, F is
monotonically non-decreasing. We say that p is faulty in F if p ∈ F (t) for some time
t; otherwise, we say that p is correct in F . Additionally, a process p is live at time t if
p has not crashed by time t. That is, p /∈ F (t). Thus, correct processes are always live,
but faulty processes are live only prior to crashing.

Failure Detectors. An unreliable failure detector can be viewed as a distributed
oracle that can be queried for (possibly incorrect) information about crashes in Π . Each
process has access to its own local detector module that outputs the set of processes
currently suspected of having crashed. Unreliable failure detectors are characterized
by the kinds of mistakes they can make. Mistakes can include false-negatives (i.e., not
suspecting a crashed process), as well as false-positives (i.e., wrongfully suspecting
a correct process). In Chandra and Toueg’s original definition [3], each oracle class
is defined by two properties: completeness and accuracy. Completeness restricts false



negatives, while accuracy restricts false positives. More precisely, each oracle class is
a function (defined by the intersection of a completeness property and an accuracy
property), which maps each possible fault pattern to a set of admissible histories.

Our wait-free dining algorithm is based on the eventually perfect failure detector
3P from the original Chandra-Toueg hierarchy [3]. Informally, 3P is a convergent
oracle that always suspects crashed processes and eventually stops suspecting correct
processes. As such, 3P may commit finitely-many false positive mistakes during any
run before converging to an infinite suffix during which the oracle provides reliable
information about process crashes. Unfortunately, the time to convergence is not known
and it may vary from run to run.

As originally defined, the scope of 3P is global, insofar as it provides informa-
tion about all processes. One drawback of global oracles is that communication over-
head can limit their practicality for large-scale networks. Accordingly, scope-restricted
oracles have been proposed that provide information only about subsets of processes
[11–13]. Our dining solution uses a variant of 3P defined in [14, 15] for which suspect
information is only provided about immediate neighbors. This local refinement, called
3P1, satisfies the following completeness and accuracy properties:

Local Strong Completeness — Every crashed process is eventually and permanently
suspected by all correct neighbors.

Local Eventual Strong Accuracy — For every run, there exists a time after which
no correct process is suspected by any correct neighbor.

It is worth noting that 3P cannot be implemented in purely asynchronous systems.
Implementations typically use adaptive time-outs based on modest assumptions about
partial synchrony. A simple technique assumes that upper bounds on message delay and
relative process speed exist, but are unknown. Such bounds can be adaptively estimated
by ping-ack protocols which increase a time-out threshold after each false positive.
After finitely-many mistakes, the current time-out will exceed the unknown round-trip
message time, after which false positives desist.

There are known implementations of 3P in several other models partial synchrony
as well [3, 16–18]. The common advantage is that 3P-based algorithms are decoupled
from explicit commitments to underlying detection mechanisms and/or specific timing
parameters. Additionally, the local refinement 3P1 can also be implemented efficiently
in sparse, large-scale, and even partitionable networks [15].

3 A Wait-Free Dining Algorithm For 3WX

Our solution is based on the classic hygienic dining algorithm [19]. In hygienic dining,
a unique fork is associated with each edge in the conflict graph. A hungry process must
collect and hold all shared forks to eat. This provides a simple basis for safety, since at
most one diner can hold a given fork at any time. Fork conflicts are resolved according to
a dynamic partial ordering on process priority. After eating, diners reduce priority below
all neighbors; this ensures progress by yielding to previously lower-priority diners.



It is easy to see why hygienic dining is not wait-free. Without fault detection, hungry
processes starve whenever missing forks are lost to crashed neighbors. The result is
actually much worse: if no process thinks forever, then the crash of any eating diner
will eventually precipitate global starvation among all processes (not just neighbors).

In our solution, suspicion by 3P1 serves as a proxy for permanently missing forks.
The completeness property guarantees that every crashed process will be eventually and
permanently suspected by all correct neighbors. As such, hungry neighbors of crashed
diners can avoid starvation by using suspicion as a proxy for permanently missing forks.
Specifically, a hungry diner i can eat if, for every neighbor j, either i holds the fork
shared with j, or the 3P1 oracle at i suspects j.

Unfortunately, suspicion by 3P1 is an unreliable proxy for missing forks, because
the eventual accuracy property also allows false-positive mistakes. For example, if live
neighbors falsely suspect each other, they may proceed to eat simultaneously, regardless
of the fork. Ideally, scheduling violations should be limited by the finite number of false-
positive mistakes per run. It remains to show, however, that 3WX will still be satisfied
after 3P1 converges.

A deeper subtlety is the impact of oracular mistakes on maintaining a consistent
ordering of process priorities. In hygienic dining, relative process priorities are typically
encoded directly in the fork variables. As such, it becomes trivial for diners to reduce
their priority below all neighbors after eating, because (1) diners must hold every shared
fork while eating, so (2) the current priority of every neighbor is actually known.

The same technique does not work with 3P1, because false-positive mistakes may
enable diners to eat despite missing critical forks. In the worst case, two neighbors can
eat simultaneously even if neither holds the fork. This can occur if the fork is in transit,
but both diners begin eating as the result of mutual suspicion. If the fork is still in
transit when both diners complete eating, then neither diner knows the actual priority
ordering. Unlike hygienic dining, it is impossible for both diners to reduce their own
priority below all neighbors; either one diner will not lower its priority sufficiently, or
both priorities will match (which could lead to symmetries resulting in deadlock).

To circumvent this difficulty, we store process priorities explicitly at each diner,
and assume unique identifiers to break symmetries. Additionally, we establish wait-free
progress even though priorities are reduced by arbitrary values after eating.

3.1 Algorithm Variables

Our algorithm guarantees safety using forks plus the eventual strong accuracy of 3P1.
It guarantees wait-free progress using a dynamic ordering on process priorities, plus
the strong completeness of 3P1. In addition to the local oracle module, each process
has the following local variables. A trivalent variable statei denotes the current dining
phase: thinking, hungry, or eating. Each process also has a local integer-valued variable
heighti (which can grow negatively without bound), and a unique process identifier idi.
Taken together as an ordered pair, (heighti, idi) determines the priorityi of process i.
Since process identifiers are unique, every pair of priorities, x and y, can be totally
ordered lexicographically as follows:

x < y
def= (x.height < y.height) ∨ ((x.height = y.height) ∧ (x.id < y.id))



To implement the forks, we introduce two local variables for each pair of neighbors.
For process i, we associate a boolean variable forkij for each neighbor j. Symmetrically,
each process j has a boolean variable forkji corresponding to neighbor i. We interpret
these variables as follows: forkij is true iff process i holds the unique fork that it shares
with neighbor j. Alternatively, forkji is true iff j holds the fork. When the fork is in
transit from one neighbor to the other, both local variables are false. Since the fork is
unique and exclusive, it is never the case that both variables are true.

In addition to the forks, we also introduce a request token between each pair of
neighbors. In general, if process i holds a request token, but needs the corresponding
fork from j, then i can request the missing fork by sending the request token to j.
Request tokens are implemented and interpreted the same as forks. For process i, we
associate a unique boolean variable tokenij for each neighbor j. Symmetrically, each
process j has a boolean variable tokenji corresponding to neighbor i.

3.2 Algorithm Actions

A thinking process can become hungry at any time by executing Action 1 and selecting
the corresponding alternative. Action 2 is always enabled while hungry. When executed,
it requests every missing fork for which no previous request is currently pending. This
is achieved by sending the request token to the corresponding neighbor, including the
current priority of the requesting process. As a result, the local token variable becomes
false to indicate that a request has been sent.

Action 3 handles fork requests. The requested fork must be sent immediately if the
recipient is thinking, but also if the recipient is hungry but has lower priority than the
requestor. Otherwise, the fork request is deferred until after eating. Deferred requests
are represented by holding both the shared fork and the request token. Note that if a
hungry process loses a requested fork to a higher-priority neighbor in Action 3, the
relinquished fork will be re-requested by subsequently executing Action 2, which is
always enabled while hungry.

Action 4 simply receives forks, and Action 5 determines when a hungry process
can begin eating. A hungry process i can begin eating if, for each neighbor j, process i
either holds the shared fork, or currently suspects j. This is the only action that utilizes
the local oracle 3P1 and it is central to the wait-freedom of the algorithm.

Action 6 exits eating and transits back to thinking. This action reduces the priority
of the diner, and sends forks for any requests that were previously deferred while hungry
or eating. To reduce priority, Action 6 invokes a local procedure called Lower which
reduces only the height component of the diner’s priority by some positive integer. The
magnitude of the reduction is up to the algorithm designer, and can be either statically
fixed or dynamically chosen at runtime.

Action 6 isolates several subtleties. In hygienic dining, a process must reduce its
priority below that of all neighbors after eating. This absolute reduction forms the basis
for progress, because it forces high-priority diners to yield to lower-priority neighbors.
In our algorithm, oracular mistakes may enable some diners to eat without knowing
the priorities of all live neighbors. As such, hygienic reductions cannot be guaranteed.
Our proof of progress shows that reducing priority by an arbitrary amount is sufficient,
because it still reduces the number of times any diner can overtake its live neighbors.



Code for process i, with unique identifier idi and local set of neighbors N(i)

var statei : {thinking, hungry, eating} init, statei = thinking
heighti : integer init, heighti = 0
priorityi : (heighti × process-id) init, priorityi = (0, idi)
forkij : boolean, for each j ∈ N(i) init, forkij = (i > j)
tokenij : boolean, for each j ∈ N(i) init, tokenij = (i < j)
3P1 : local eventually perfect detector init, 3P1 ⊆ N(i)

1 : {statei = thinking} −→ Action 1
2 : statei := (thinking or hungry) Become Hungry

3 : {statei = hungry} −→ Action 2
4 : ∀j ∈ N(i) where (tokenij ∧ ¬forkij) do Request Missing Forks
5 : send-request 〈priorityi〉 to j
6 : tokenij := false

7 : {receive-request 〈priorityj〉 from j ∈ N(i)} −→ Action 3
8 : tokenij := true Send Fork or
9 : if (statei = thinking ∨ (statei = hungry ∧ (priorityi < priorityj))) Defer

10 : then send-fork〈i〉 to j
11 : forkij := false

12 : {receive-fork 〈j〉 from j ∈ N(i)} −→ Action 4
13 : forkij := true Obtain Shared Fork

14 : {statei = hungry ∧ (∀j ∈ N(i) :: (forkij ∨ j ∈ 3P1))} −→ Action 5
15 : statei := eating Enter Critical Section

16 : {statei = eating} −→ Action 6
17 : Lower(priorityi) Exit Critical Section
18 : statei := thinking Send Deferred Forks
19 : ∀j ∈ N(i) where (tokenij ∧ forkij) do
20 : send-fork〈i〉 to j
21 : forkij := false

22 : procedure Lower (p : priority) Reduce Priority
23 : ensures p′ := Lower (p) where Process ID Unchanged
24 : (p′.id = p.id) and (p′.height < p.height) Integer Height Lowered

Algorithm 1.1. Wait-Free Dining under Eventual Weak Exclusion



4 Proof of Correctness

Lost tokens or forks can compromise progress, while duplicated tokens or forks can
compromise safety. First we prove some basic lemmas which assert that each pair of
live neighbors share a unique fork and a unique request token.

Lemma 1. There exists exactly one token between each pair of live neighbors.
Proof. For each pair of neighbors, the initialization code creates a unique token

at the lower-priority process. Since communication channels are reliable, this token is
neither lost nor duplicated while in transit. Only Actions 2 and 3 can modify the token
variables. No token is lost, because every token received is locally stored (Action 3),
and no token is locally removed unless it is sent (Action 2). No token is duplicated,
because every token sent is locally removed, and no absent token is ever sent (Action
2). Thus, token uniqueness is preserved. �

Lemma 2.1 There exists exactly one fork between each pair of live neighbors.
Proof. For each pair of neighbors, the initialization code creates a unique fork at the

higher-priority process. Since communication channels are reliable, this fork is neither
lost nor duplicated while in transit. Only Actions 3, 4, and 6 modify the fork variables.
No fork is lost, because every fork received is locally stored (Action 4), and no fork is
locally removed unless it is sent (Actions 3 & 6). No fork is duplicated, because every
fork sent is locally removed, and no absent fork is ever sent∗ (Action 3 & 6). Thus, fork
uniqueness is preserved. �

∗Action 3 can send forks (Line 11) without verifying their local presence. If such
forks are absent, then this action could compromise 3WX by duplicating forks. As it
turns out, Action 3 is never enabled unless the requested fork is actually present. This
result may not be obvious from the program text, because it depends explicitly on the
assumption of FIFO channels. Consequently, we prove this assertion separately below.

Lemma 2.2 Action 3 is never enabled unless the requested fork is present.
Proof. Suppose for contradiction that Action 3 is enabled at some process i at time

t2, but that the requested fork is absent. This action can only be enabled by i receiving
a request token from some neighbor j that executed Action 2 at an earlier time t1 < t2.
The condition in Line 4 asserts that j held the token but not the shared fork at time t1.
Consequently, the fork was already at i or it was in transit at time t1.

1. Suppose the fork was in transit from j to i. By FIFO channels, the fork had to arrive
at i before the request token which enabled Action 3 at time t2. Only Actions 3 and
6 send forks, but both require the fork and token to be co-located. Thus, the fork
remains at i until Action 3 became enabled at time t2.

2. Suppose the fork was in transit from i to j. Then i must have sent the fork by
executing Action 3 or 6 at some earlier time t0 < t1. As mentioned above, the
token must have been co-located with the fork at time t0. Again, by FIFO channels,
j could not execute Action 2 at time t1, because the token could not have overtaken
the fork which was still in transit. �



Theorem 1: Algorithm 1 satisfies eventual weak exclusion 3WX . That is, for every
execution there exists a time after which no two live neighbors eat simultaneously.

Proof: The safety proof is by direct construction and uses the local eventually
strong accuracy property of 3P1. This property guarantees that for each run there exists
a time t after which no correct process is suspected by any correct neighbor.

We observe that faulty processes cannot prevent 3WX from being established.
Since faulty processes are live for only a finite prefix before crashing, they can eat
simultaneously with live neighbors only finitely many times in any run. Consequently,
we can restrict our focus to correct processes only.

Consider any execution α of Algorithm 1. Let t denote the time in α after which
3P1 never suspects correct neighbors. Let i be any correct process that begins eating
after time t. By Action 5, process i can only transit from hungry to eating if, for each
neighbor j, either i holds the shared fork or i suspects j. Since 3P1 never suspects
correct neighbors after time t in execution α, process i must hold every fork it shares
with its correct neighbors in order to begin eating.

So long as i remains eating, Actions 3 and 6 guarantee that i will defer all fork
requests. As such, p will not relinquish any forks while eating. From Lemma 2.1, we
know that forks cannot be duplicated either. Furthermore, 3P1 has already converged
in α, so no correct neighbor can suspect p. Thus, Action 5 remains disabled for every
correct hungry neighbor of i until after i transits back to thinking. We conclude that no
pair of correct neighbors can begin1 overlapping eating sessions after time t. �

Next we introduce some definitions to construct a metric function for the progress
proof. First, we measure the priority distance between any two processes i and j as:

dist(i, j) =


0, if (priorityi < priorityj)
heighti − heightj , if (priorityi > priorityj) ∧ (idi < idj)
heighti − heightj + 1, if (priorityi > priorityj) ∧ (idi > idj)

Suppose for any pair of processes i and j that dist(i, j) = d in some configuration
where j is hungry. While j remains hungry, priorityj remains unchanged. Also, recall
from Action 6 that each process reduces the height component of its priority after eating.
Consequently, d is an upper bound on the maximum number of times that process i can
overtake process j before either j gets scheduled to eat or priorityi < priorityj .

Now we define a metric function M : Π → IN for each diner j ∈ Π as follows:

M(j) =
∑
i 6=j

dist(i, j)

1 As a technical point, diners might forestall 3WX by eating with neighbors that began eating
before 3P1 converged. For example, consider neighbors i and j, where i holds the shared
fork, but j began eating by falsely suspecting i before 3P1 converged. Since j is already
eating, but i holds the shared fork, i might violate exclusion by eating with j even after the
oracle has converged. This can happen multiple times, in fact, so long as j continues to eat.
The phenomenon is temporary, however, because j is either faulty and crashes, or j is correct
and must exit eating within finite time. Thereafter, i and j never eat simultaneously again.



First, we observe that M is bounded below by 0, and that M(j) = 0 iff j currently
has the highest priority value among all processes in Π . In general, the value of M(j)
depends only on processes that are currently higher-priority than j. This is because
dist(i, j) = 0 for any process i with priorityi < priorityj . If M(j) = b, then b is an
upper bound on how many times any higher-priority process can eat before either j gets
scheduled to eat or priorityj becomes globally maximal.

We also note that the metric value of each process in a given configuration is unique:
(i 6= j) ⇒ M(i) 6= M(j). Moreover, M(i) < M(j) ⇔ (priorityi > priorityj). These
properties follow from the fact that priorities are totally ordered.

Finally,the metric value M(j) never increases while process j is thinking or hungry.
M(j) can only increase by reducing the height component of priorityj in Action 6 after
eating. Importantly, this change in relative priority actually causes the metric values of
all other processes to decrease.

We are now prepared to state and prove the following helper lemma for progress:
Lemma 3. Let C be a configuration where some correct process is hungry, and let

H denote the set of all hungry processes in C. The correct process j ∈ H with minimal
metric eventually eats, or some correct process i with M(i) < M(j) becomes hungry.

Proof. Let j be the unique correct hungry process with minimal metric value in
H . In other words, j is the highest-priority correct hungry process in configuration C.
Lemma 3 holds trivially if j eats or if any correct process i with M(i) < M(j) becomes
hungry. Otherwise, j remains the highest-priority correct hungry process forever. We
will show that this latter case leads to a contradiction.

By definition, every faulty neighbor of j will crash within finite time. By the local
strong completeness of 3P1, process j will permanently suspect such processes by
some unknown time t. Thereafter, j must collect forks only from its correct neighbors.

First, j will not lose any such forks. By hypothesis, j is hungry and higher priority
than any correct neighbor, so any fork request received by j in Action 3 will be deferred.

Second, j will eventually acquire every fork shared with its correct neighbors. By
Lemma 1, j shares a unique request token with each such neighbor. For any missing
fork, Action 2 guarantees that j will eventually send the corresponding token. Since j
is higher priority than any correct neighbor, these fork requests must be honored unless
the recipient is currently eating. In the latter case, the requested fork will be sent when
the correct neighbor exits eating in Action 6.

We conclude that if j remains hungry indefinitely, then j eventually suspects each
faulty neighbor and eventually holds the shared fork with each correct neighbor. By
Line 14, the guard on Action 5 is enabled. So j eats and Lemma 3 is established. �

Theorem 2: Algorithm 1 satisfies wait-free progress. That is, every correct hungry
process eventually eats.

Proof: We prove wait-freedom by complete (strong) induction on metric values.
Base Case: Let j be a correct hungry process with M(j) = 0.
By definition, the metric value M(j) is minimal, so Lemma 3 applies to j. There

are only two outcomes: either j eats, or some process i with M(i) < M(j) becomes
hungry. Since metric values are unique and bounded below by 0, no such process i
exists. Consequently, j eventually eats. �



Inductive Hypothesis: Suppose for k > 0 that every correct hungry process i with
M(i) < k eventually eats. It remains to show that every correct hungry process j with
M(j) = k eventually eats as well.

Let C be a configuration, and let j be a correct hungry process in C with M(j) = k.
Suppose that k is the minimal metric value among all correct hungry processes in C.
Then Lemma 3 applies to j, so we conclude that j eventually eats, or some correct
process i with M(i) < M(j) becomes hungry. Alternatively, suppose that k is not
the minimal metric value among all correct hungry processes in C. Then some correct
hungry process i with M(i) < k already exists.

Either way, we conclude that j eventually eats or the inductive hypothesis applies
to some correct hungry process i with M(i) < k. In the latter case, process i eats. As a
correct diner, i eventually stops eating by executing Action 6, which thereby lowers the
height component of priorityi and decreases dist(i, j) by at least 1. Recall that while j
remains hungry, M(j) does not increase. Thus, any decrease in dist(i, j) will cause the
metric value of M(j) becomes less than k. Since j is now a correct hungry process with
M(j) < k, the inductive hypothesis applies directly to j. We conclude that j eventually
eats, and that Algorithm 1 satisfies wait-free progress by complete induction. �

5 Contributions

We have examined the dining philosophers problem under eventual weak exclusion in
environments subject to permanent crash faults. Eventual weak exclusion (3WX ) per-
mits conflicting diners to eat concurrently only finitely many times, but requires that, for
each run, there exists a (potentially unknown) time after which live neighbors never eat
simultaneously. This safety property models systems where resources are recoverable
or where sharing violations precipitate only transient (repairable) faults. Applications
of 3WX include shared-memory contention management [6], conflict managers for
self-stabilizing systems [7], and wait-free eventually fair daemons [8].

Dining under 3WX is unsolvable in asynchronous environments, where crash faults
can precipitate permanent starvation among live diners. The contribution of our work
is a wait-free dining algorithm for 3WX in partially synchronous environments which
guarantees that every correct hungry process eventually eats, even in the presence of
arbitrarily many crash faults. Our oracle-based solution uses a local refinement of the
eventually perfect failure detector 3P1. This oracle always suspects crashed neigh-
bors, and eventually stops suspecting correct neighbors. 3P1 provides information only
about immediate neighbors, and, as such, it is fundamental to the scalability of our ap-
proach, since it is implementable in partially synchronous environments with sparse
communication graphs that are partitionable by crash faults.

Our work demonstrates that 3P1 is sufficient for wait-free dining under 3WX . It
is an open question, however, whether this oracle is actually necessary. This question
goes to the minimality of our assumptions and the portability of our solutions to weaker
models of partial synchrony. On the one hand, wait-free dining under 3WX is a harder
problem than fault-tolerant consensus; the eventually strong oracle 3S — which is
sufficient for consensus [3] — is not sufficient for wait-free dining [20]. Thus, the search
for a weakest failure detector is bounded above by 3P1 and below by 3S.



References
1. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1 (1971)

115–138 Reprinted in Operating Systems Techniques, C.A.R. Hoare and R.H. Perrot, Eds.,
pp. 72–93, Academic Press, 1972. An earlier version appeared as EWD310.

2. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In: Proceedings of
the 12th ACM Symposium on Theory of Computing (STOC). (1980) 70–81

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Jour-
nal of the ACM 43 (1996) 225–267

4. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclusion in
asynchronous systems with failure detectors. J. Parallel Distrib. Comput. 65 (2005) 492–505

5. Pike, S.M., Sivilotti, P.A.G.: Dining philosophers with crash locality 1. In: Proceedings of
the 24th IEEE International Conference on Distributed Computing Systems (ICDCS), IEEE
(2004) 22–29

6. Guerraoui, R., Kapałka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. In: 20th International Symposium on Distributed Computing (DISC).
Volume 4167 of Lecture Notes in Computer Science (LNCS)., Springer (2006) 399–412

7. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assump-
tion. In: 27th International Conference on Distributed Computing Systems (ICDCS), IEEE
(2007) 46–53

8. Song, Y., Pike, S.M.: Eventually k-bounded wait-free distributed daemons. In: 37th Interna-
tional Conference on Dependable Systems and Networks (DSN), IEEE (2007) 645–655

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. (TOPLAS) 13
(1991) 124–149

10. Cristian, F.: Understanding fault-tolerant distributed systems. Comm. ACM 34 (1991) 56–78
11. Anceaume, E., Fernández, A., Mostéfaoui, A., Neiger, G., Raynal, M.: A necessary and

sufficient condition for transforming limited accuracy failure detectors. J. Comput. Syst. Sci.
68 (2004) 123–133

12. Guerraoui, R., Schiper, A.: Γ–accurate failure detectors. In Babaoglu, Ö., Marzullo, K., eds.:
10th International Workshop on Distributed Algorithms (WDAG). Volume 1151 of Lecture
Notes in Computer Science., Bologna, Italy, Springer (1996) 269–286

13. Raynal, M., Tronel, F.: Restricted failure detectors: Definition and reduction protocols. In-
formation Processing Letters 72 (1999) 91–97

14. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: Impossibility
results and solutions using self-stabilizing failure detectors. International Journal of Systems
Science 28 (1997) 1177–1187

15. Hutle, M., Widder, J.: Self-stabilizing failure detector algorithms. In Fahringer, T., Hamza,
M.H., eds.: Parallel and Distributed Computing and Networks (PDCN), IASTED/ACTA
Press (2005) 485–490

16. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony.
Journal of the ACM 35 (1988) 288–323

17. Fetzer, C., Schmid, U., Süsskraut, M.: On the possibility of consensus in asynchronous
systems with finite average response times. In: 25th International Conference on Distributed
Computing System (ICDCS), IEEE (2005) 271–280

18. Sastry, S., Pike, S.M.: Eventually perfect failure detectors using ADD channels. In: 5th
International Symposium on Parallel and Distributed Processing and Applications (ISPA).
Volume 4742 of Lecture Notes in Computer Science., Springer (2007) 483–496

19. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 6 (1984) 632–646

20. Pike, S.M.: Distributed Resource Allocation with Scalable Crash Containment. PhD thesis,
The Ohio State University, Department of Computer Science & Engineering (2004)


