
Eventually Perfect Failure Detectors using ADD
Channels

Srikanth Sastry and Scott M. Pike?

Texas A&M University
Department of Computer Science

College Station, TX 77843-3112, USA
{sastry, pike}@cs.tamu.edu

Abstract. We present a novel implementation of the eventually perfect
failure detector (3P) from the original hierarchy of Chandra-Toueg or-
acles. Previous implementations of 3P have assumed models of partial
synchrony where point-to-point message delay is bounded and/or com-
munication is reliable. We show how to implement this important oracle
under even weaker assumptions using Average Delayed/Dropped (ADD)
channels. Briefly, all messages sent on an ADD channel are privileged or
non-privileged. All non-privileged messages can be arbitrarily delayed or
even dropped. For each run, however, there exists an unknown window
size w, and two unknown upper-bounds d and r, where d bounds the
average delay of the last w privileged messages, and r bounds the ratio
of non-privileged messages to privileged messages per window.

Key words: Failure Detectors, Partial Synchrony, Communication Models

1 Introduction

A failure detector can be viewed as a distributed oracle that can be queried for
(potentially unreliable) information about process crashes. Unreliable oracles can
make mistakes by wrongfully suspecting correct processes, and/or not suspecting
crashed processes. Despite such mistakes, many oracles are sufficiently powerful
to solve important problems that are not solvable in crash-prone asynchronous
systems. For example, the hierarchy of Chandra-Toueg oracles [1] was originally
introduced to circumvent impossibility results for fault-tolerant consensus [2].

Oracle-based algorithms achieve an essential separation of concerns between
detection properties and detection mechanisms. To be implemented in practice,
most failure detector classes require some degree of partial or even full synchrony.
The timing assumptions for fault detection, however, are encapsulated by the
oracle abstraction. Since oracle-based algorithms depend only on the assertional
properties of fault detection, they are effectively decoupled from the underlying
implementation mechanisms and network timing parameters.
? This work was supported by the Advanced Research Program of the Texas Higher

Education Coordinating Board under Project Number 000512-0007-2006.

This separation of concerns has spawned two basic lines of research. One
examines the weakest detection properties sufficient for solving fundamental
problems using oracles. The other examines increasingly weaker models of com-
putation for implementing oracles in real systems. These two trajectories are
complementary. The former extends our knowledge of relative solvability, while
the latter addresses the practical implications of implementing such oracles, typ-
ically for providing fault-detection capabilities as a system service.

We contribute to the second line of research by defining a novel implemen-
tation of the eventually perfect failure detector 3P from the original Chandra-
Toueg hierarchy [1]. Informally, 3P can give arbitrarily unreliable information
about process crashes for a finite computation prefix of unknown length. Eventu-
ally, however, it provides perfect information about crash faults. Unfortunately,
the time to convergence is not known, so it is not generally decidable whether
the output of 3P during a given segment of computation is reliable or not. More
precisely, 3P satisfies the following two properties [1]:

– Strong Completeness: Every crashed process is eventually and perma-
nently suspected by every correct process.

– Eventual Strong Accuracy: For each run, there exists an unknown time
after which no correct process is suspected by any correct process.

The oracle 3P is of interest for two primary reasons: it is relatively pow-
erful, and yet realistically implementable. First, 3P is sufficiently powerful to
solve many fundamental problems which are otherwise unsolvable without some
recourse to fault detection. 3P is more than sufficient to solve fault-tolerant
consensus [1], but its computational power is better illustrated by its sufficiency
for harder problems like stable leader election [3], quiescent reliable communi-
cation [4], wait-free non-blocking contention management [5], wait-free eventual
weak exclusion [6], crash-locality-1 dining philosophers [7], and wait-free even-
tually k-bounded schedulers under eventual weak exclusion [8].

Beyond its theoretical significance, 3P is also realistically implementable.
Among other relatively powerful oracles — such as the Perfect (P) [1], Strong
(S) [1], and Marabout [9] detectors — 3P is the only oracle implementable in
partially synchronous systems. This result is from [10], where Larrea, et al., prove
that failure detectors with perpetual accuracy (including P, S, and Marabout)
cannot be implemented in classical models of partial synchrony [1,11]. As such,
3P has both theoretical as well as practical importance, insofar as it can solve
important fault-tolerant problems, while being implementable in systems subject
to timing uncertainties characterized by partial synchrony.

Ideally, we would like to know the weakest system model for implementing
3P. This challenge has dual significance, because it underpins the fundamental
solvability and portability of 3P-based algorithms. Accordingly, the contribu-
tions of this paper are twofold: (1) we articulate a new, weaker model of partially
synchronous communication called Average Delayed/Dropped (ADD) Channels,
and (2) we implement 3P in the ADD model, which permits unbounded mes-
sage loss and unbounded point-to-point message delay. Our results characterize
one of the weakest models to date for implementing 3P.

2 Motivation

Classical models of partial synchrony ([1, 3, 12–17]) for implementing 3P make
certain assumptions about the reliability and timeliness of the underlying com-
munication channels. The models cited above assume that the communication
channels are either always reliable1, or eventually reliable (i.e., can lose at most
finitely-many messages over some prefix, followed by an infinite reliable suffix).
Additionally, these models assume the existence of upper-bounds (known or un-
known) on point-to-point message delay, or average message delay.

In many systems, however, message loss and/or delays occur intermittently
throughout the computation. For instance, consider a communication system
with (1) an unknown upper-bound on channel delay, (2) bounded buffers at
each in-bound channel interface, and (3) a load-shedding policy (such as milk or
wine) for congestion control. Suppose process p persistently sends messages to q
at a rate faster than q can process them. In finite time, the in-bound buffer at q
becomes full and activates the load-shedding policy: for milk, buffered messages
are dropped in favor of (fresh) arriving messages; for wine, arriving messages
are dropped in favor of (aged) buffered messages. For every message that arrives
when the buffer at q is full, some message is lost. However, q processes messages
infinitely often, so infinitely many messages are also delivered reliably. Upper-
bounds on channel delay and buffer delay translate into an upper-bound on
ene-to-end message delay. Therefore, an infinite subset of messages are delivered
within some bounded delay, but an infinite subset of them are also dropped.

Existing implementations of 3P can be trivially adapted to withstand certain
subsets of messages being arbitrarily delayed or dropped. For instance, consider
a system E where only the odd-numbered messages may be delayed or dropped,
but all the even-numbered messages are delivered reliably within some unknown
bound on delay. Implementing 3P in such a system is trivial, because the infinite
pattern of potentially delayed and dropped messages in known, and hence can be
used to advantage. Such applications can simply send dummy information in the
odd-numbered messages and use the even-numbered messages to communicate.
Effectively, the applications have access to a reliable sub-channel consisting of
the even-numbered messages. However, consider a system T where, during every
prefix of computation, at most 50% of the messages sent may be delayed or
dropped, but all other messages are delivered within some (unknown) bound on
delay. Implementing 3P in such a system becomes non-trivial.

In this paper, we consider systems in which an infinite subset of messages can
be non-privileged, insofar as they may be arbitrarily delayed or even dropped. We
assume that non-privileged messages follow some distribution, about which we
have only limited knowledge. All we assume is that each sufficiently long window
of communication contains at least one message that is neither dropped, nor
arbitrarily delayed. Our system model and implementation of 3P follow next.

1 A communication channel is said to be reliable if every message sent to any correct
process is delivered in finite time, and is neither lost, duplicated, nor corrupted.

3 System Model

We introduce a new model of partial synchrony based on unreliable communica-
tion links called Average Delayed or Dropped (ADD) Channels, and show how to
implement 3P. To our knowledge, the ADD system model is weaker than peer
models of partial synchrony for implementing 3P using only bounded space.

3.1 Communication Model – ADD Channels

Every Average Delayed or Dropped (ADD) channel is a unidirectional commu-
nication link connecting two process. All messages sent on an ADD channel can
be logically partitioned into two disjoint sets: privileged and non-privileged. This
distinction is merely a modeling device which is known neither to the channel,
nor to the application processes using such channels. Non-privileged messages
have no timing or reliability guarantees. As such, infinitely many messages may
be arbitrarily delayed or even dropped. By contrast, ADD channels provide the
following guarantees for privileged messages:

1. If a process p sends infinitely-many messages to a correct process q on an
ADD channel, then some infinite subset of those messages will be privileged.
All such privileged messages will be delivered reliably to q.

2. For every execution of an ADD channel, there exists an unknown window
size w ∈ N+, an unknown message delay d ∈ N+, and an unknown message
ratio r ∈ N+, such that for every sending interval containing a subsequence
S of exactly w privileged messages:
(a) The average delay of all privileged messages in S is at most d.
(b) The average number of non-privileged messages sent between

any consecutive pair of privileged messages in S is at most r.

Intuitively, privileged messages are delivered reliably, and, on average, are
neither too late nor too sparse. Privileged and non-privileged messages can be
interleaved, but any interval containing w privileged messages is subject to the
bounds d and r, which restrict the average delay of privileged messages, and the
average ratio to non-privileged messages, respectively. Although the bounds w,
d, and r exist for each ADD channel, they are unknown and may vary per run.

3.2 Simplified Reduction of ADD Channel Properties

Consider any run of an ADD channel with window size w and average privileged
delay d. For contradiction, suppose that some privileged message m is delayed
for more than w× d time units in this run. Consider any sequence S containing
w privileged messages including m. The average delay of privileged messages in
S must exceed d. Thus, the unknown window size w and the unknown bound d
on average privileged delay actually induce an unknown bound on the absolute
delay of privileged messages; specifically, no privileged message can be delayed
more than w × d = D time units.

Similarly, let r bound the average number of non-privileged messages between
any consecutive pair of privileged messages in windows of size w. Again, suppose
for contradiction that more than w×r non-privileged messages are sent between
some consecutive pair of privileged messages, say, mi and mj . Consider any
sequence S containing w privileged messages including mi and mj . The average
ratio of non-privileged to privileged messages in S must exceed r. Thus, the
unknown window size w and the unknown bound r on average message ratio
actually induce an unknown bound on the maximum number of non-privileged
messages which can be sent between any consecutive pair of privileged messages;
specifically, at most w× r = R non-privileged messages can be sent between any
consecutive pair of privileged messages.

The foregoing analysis yields a simplified specification of the timeliness and
reliability properties of ADD channels. This equivalent characterization will be
used throughout the remainder of the paper in our analysis and proofs.

1. If a process p sends infinitely-many messages to a correct process q on an
ADD channel, then some infinite subset of those messages will be privileged.
All such privileged messages will be delivered reliably to q.

2. For every execution of an ADD channel, there exist two unknown bounds
D ∈ N+ and R ∈ N+ such that:
(a) The absolute delay of all privileged messages is at most D.
(b) The maximum number of non-privileged messages sent between

any consecutive pair of privileged messages is at most R.

3.3 ADD System Model

An ADD system consists of a finite set of processes Π where:

1. Processes can fail only by crashing, which occurs when a process ceases exe-
cution without warning and never recovers. Any process that is not crashed
is considered to be live.

2. Each pair of processes is connected via two reciprocal ADD channels, and
message passing is the only means of interprocess communication.

3. There exists an unknown lower-bound on the absolute speed of live processes.
No bounds on relative process speeds are assumed.

4. Each process has access to a local clock which generates ticks at a constant
rate. Different clocks can tick at different rates and be unsynchronized. In
physical systems, this is typically realized by a crystal oscillator which gen-
erates clock ticks at a constant frequency.

4 Implementation

In this section, we describe a heartbeat-based implementation of 3P in the
ADD model for a system S with n processes. Our implementation has two types
of modules: heartbeat generators and heartbeat witnesses. Each process p has a

single heartbeat generator, and n heartbeat witnesses (one for each process in
S). Note that p has a heartbeat witness for itself as well. Thus, there are n
generators and n2 witnesses globally in the system.

Each heartbeat generator periodically sends n heartbeats, one to each process
in S. The heartbeat frequency at each process is not necessarily known; moreover,
it may vary from process to process due to local differences in hardware, server
loads, and operating system scheduling policies. Nonetheless, we will show that
each generator satisfies a lower-bound on heartbeat frequency. In conjunction
with ADD channels, such heartbeat generators will yield an upper bound on the
heartbeat inter-arrival times at each recipient. Although such bounds are not
necessarily known, they can be adaptively estimated by the witness modules to
provide an eventually reliable time-out mechanism.

Each heartbeat witness monitors the heartbeat traffic received on a given
ADD channel. The role of each witness is to maintain a time-out variable that
eventually converges to the de facto upper-bound on heartbeat inter-arrival
time. Each witness starts with an initial estimate of the inter-arrival bound.
If no heartbeat is received within the estimated bound, then the process sending
heartbeats on this channel is suspected. False-positive suspicions may result if
the estimated bound is too low, but such mistakes will be detected whenever
a subsequent heartbeat is received. If so, the witness exonerates the previously
suspected process, and increases its estimate of the inter-arrival bound.

The adaptive time-out mechanism just described is a common approach to
implementing 3P. The informal basis for correctness is as follows. Consider two
processes p and q. If q crashes, then p receives at most finitely many messages
from q. After the final such message, p will eventually time-out and permanently
suspect q thereafter. This satisfies the strong completeness requirement of 3P.
By contrast, if p and q are both correct, then p can falsely suspect q at most
finitely many times. Since q sends infinitely many heartbeats, each false suspicion
of q will be detected by p, thereby causing p to increase its estimated bound on
inter-arrival time. This estimate can only increase finitely many times before
eventually exceeding the actual bound on inter-arrival time. Thereafter, p never
suspects q again. This satisfies the eventual strong accuracy requirement of 3P.

The foregoing argument for correctness depends on the critical assumption
that there exists an upper bound on heartbeat inter-arrival times. The pri-
mary contribution of our work is to demonstrate that inter-arrival times can
be bounded in the ADD system model, despite the fact that (1) there is no
upper bound on relative process speeds, (2) there is no upper bound on message
delay, and (3) infinitely many messages can be dropped. Nevertheless, we will
prove that the ADD system model is sufficient to implement heartbeat gener-
ators with a lower bound on heartbeat frequency, and that ADD channels are
sufficiently timely and reliable to convert lower bounds on heartbeat frequency
into upper bounds on heartbeat inter-arrival times.

The remainder of this section describes the heartbeat generator and heartbeat
witness modules, and defines a scheduler for fairly interleaving the actions of each
module as threads within a single process.

class timer()
1 : method timer.start(integer countervalue)
2 : counter := countervalue
3 : while (counter > 0)
4 : upon event clock tick() decrement counter
5 : send notification
6 : end method
7 : method timer.stop()
8 : counter := 0
9 : end method

Fig. 1.1. Implementation of a timer using the local clock

4.1 Communication Patterns

Sending pattern and receiving pattern. In an execution, we refer to the set
of messages sent by one process to another as a sending pattern. Some messages
in the sending pattern may be dropped. Therefore, only a subset of the sending
pattern is delivered. We refer to the set of messages (sent by some process) that
is delivered to a process as a receiving pattern.

Bounded persistent sending pattern. Consider a sending pattern s con-
sisting of an infinite number of messages. If there exists an upper-bound on the
duration between every pair of consecutive messages, then s is referred to as a
bounded persistent sending pattern.

4.2 Timer

In order to send heartbeats at regular intervals, and to implement an adaptive
timeout mechanism, we need a mechanism to measure time. We accomplish this
through a countdown timer. A class called timer implements such a countdown
timer using the local clock available at each process. The pseudo-code for the
class is show in Fig. 1.1.

The class timer uses the local clock primitive clock tick() to measure time.
The primitive clock tick() is the output of the local clock provided by the system
that generates ticks at a constant rate. clock tick() generates an event (tick) that
is used by timer to count down.

The class timer has two methods associated with it: start, and stop. The
method timer.start accepts a countdown value, and starts counting down from
the given value to zero. The counter is decremented for each clock tick. When
the counter reaches zero, and a notification is sent to the process that called
that timer. The method timer.stop simply sets the counter value to zero, and
no notification is sent.

function generator(process p)
1 : param:
2 : p ∈ Π /* p is the client process */
3 : var:
4 : const inter hb time /* timer for sending heartbeats periodically */
5 : primitive:
6 : timer hb tmr /* timer is the class from Fig. 1.1 */
7 : begin
8 : loop forever
9 : hb tmr.start(inter hb time)
10 : wait until notification from hb tmr
11 : foreach q ∈ Π
12 : send a heartbeat to q
13 : end

Fig. 1.2. Pseudo-code generator implements the heartbeat generator at process
p, periodically sending heartbeats to all process

4.3 Heartbeat Generator

The pseudo-code in Figure 1.2 implements the heartbeat generator. The param-
eter p is the local client process of the heartbeat generator. The variable hb tmr
is an instance of the timer class in Fig. 1.1. The variable inter hb time deter-
mines the interval between two heartbeats sent to a process. This variable is
constant, and is determined before the execution begins.

Heartbeat generator sends heartbeats at regular intervals. The regularity of
the interval is maintained by the loop forever construct in lines 8–12 in Fig. 1.2.
The timer hb tmr starts (line 9) in the beginning of each iteration of the loop for
a duration of inter hb time time units. In line 10, the heartbeat generator waits
for the timer to expire. Upon timer expiry, the heartbeat generator receives a
notification. After receiving the notification, the heartbeat generator sends one
heartbeat each to all the processes in the system. When generator reenters the
loop, it restarts the timer for inter hb time time units. In other words, generator
sends heartbeats after every inter hb time time units.

4.4 Heartbeat Witness

The pseudo-code in Fig. 1.3 implements the heartbeat witness. The function
receiver (in Fig. 1.3), monitors heartbeats from a single process q. To monitor
heartbeats from all processes in the system, a process p runs receiver for all
processes q ∈ Π, concurrently.

The parameter p is the process that is receiving the heartbeats, the param-
eter q is the process whose heartbeats are being monitored by p. The integer
variable max inter arrival stores the current estimate on the heartbeat inter-
arrival time, and initialized to some positive value. The timer tmr counts down

function receiver(process p, process q)
1 : param:
2 : p ∈ Π /* p is the client process */
3 : q ∈ Π /* q is the monitored process */
4 : var:
5 : integer max inter arrival := initial estimate
6 : boolean suspect := false
7 : primitive:
8 : timer tmr /* timer is the class from Fig. 1.1 */
9 : begin
10 : tmr.start(max inter arrival)
11 : loop forever
12 : if (receive heartbeat from q)
13 : if (suspect = true) /* wrongful suspicion */
14 : suspect := false
15 : increment max inter arrival /* increase timeout */
16 : tmr.start(max inter arrival)
17 : if (receive notification from tmr)
18 : suspect := true
19 : end

Fig. 1.3. Pseudo-code receiver implements the heartbeat witness monitoring
process q, at process p

from max inter arrival to zero. The boolean variable suspect stores the current
suspicion status of process q. If suspect is true, then p currently suspects q.

In Fig. 1.3, the timer tmr starts with some initial estimate of the upper-
bound on inter-arrival time of heartbeats from q (line 8). The function receiver
goes into an infinite loop (lines 11–18) waiting for either a heartbeat from q (line
12), or expiry of tmr. If a heartbeat is received from q (line 12), then receiver
checks to see if q is already in the suspect list (line 13). If q is in the suspect
list, then its a wrongful suspicion. Therefore, q is removed from the suspect list
(line 14). A wrongful suspicion implies that the current estimate on the upper-
bound on the inter-arrival time was less than the de-facto upper-bound. Hence,
receiver increases the estimate on the the upper-bound (line 15). In line 16, the
timer tmr is restarted. If the timer tmr expires (line 17), then q is added to the
suspect list.

4.5 Scheduler

The threads generator (in Fig. 1.2) and receiver (in Fig. 1.3) are scheduled by
a round-robin pre-emptive scheduler 3P-exec as shown in Figure 1.4. The set
of processes Π is finite and static. Therefore, the number of threads executed
by 3P-exec are finite and constant. The round-robin scheduling ensures that
there is an upper-bound on how long the threads generator, and receiver have
to wait in the queue before being scheduled for execution.

1 : 3P−exec (process p)
2 : cobegin
3 : foreach q ∈ Π
3 : task receiver(p, q)
4 : end foreach
5 : task generator(p)
6 : coend

Fig. 1.4. Eventually Perfect Failure Detector (3P) in the ADD model

The lower-bound on absolute process speed translates to an upper-bound on
the physical time it takes for 3P-exec (in Figure 1.4) to execute each instruction
in its code. Round-robin scheduling of threads bounds the physical time that each
generator, and receiver thread waits to be executed. The composition of the
two bounds translates to an upper-bound on the physical time it takes for each
thread to be scheduled and run on the processor.

Note that an upper-bound on physical time translates to an upper-bound on
local time measured as the number of local clock ticks. This follows from the
assumption that ADD system model provides a local clock that measures time
at a uniform rate.

5 Proof of Correctness

5.1 Proof Outline

To prove correctness, we need to show that the implementation in Sec. 4 satisfies
3P specifications viz., strong completeness and eventual strong accuracy.

The proof of correctness is divided into three parts:

– In the first part, we prove that generator (in Fig. 1.2) described in Sec. 4.3
always generates a bounded persistent sending pattern.

– In the second part, we show that when a bounded persistent sending pattern
is transmitted on an ADD channel, the channel yields a receiving pattern
with an upper-bound on inter-arrival time.

– In the third part, we show that if receiver (in Fig. 1.3) described in Sec.
4.4 witnesses a receiving pattern with an upper-bound on inter-arrival time,
receiver satisfies strong completeness and eventual strong accuracy.

The composition of the above three parts demonstrates that the implementation
described in Sec. 4 satisfies 3P specification.

5.2 Generating Bounded Persistent Sending Patterns

Lemma 1. The heartbeat generator in Fig. 1.2 always generates a bounded per-
sistent sending pattern.

Proof. The following three arguments hold:

1. All the lines in the code take bounded local time to execute.
2. The scheduler (Sec. 4.5) guarantees that every time the generator thread

enters the queue, waiting to be executed on the processor, there is an upper-
bound on the duration (measured in local time) that the generator thread
waits before executing on the processor.

3. Visual inspection of the pseudo-code in Fig. 1.2 reveals that notification for
the expiry of timer hb tmr is sent every constant number of clock ticks.

From the above three arguments it follows that there is an upper-bound on
time between two consecutive executions of lines 10–12 in Fig. 1.2. In other
words, there is an upper-bound on the time between every pair of consecutive
heartbeats to each process. Given that the timer hb tmr is started infinitely
often, heartbeats are sent infinitely often. In other words, the sending pattern
generated by these heartbeats is a bounded persistent sending pattern. ut

5.3 Upper-bound on Heartbeat Inter-arrival Time

Let a bounded persistent sending pattern, transmitted on an ADD channel, yield
a receiving pattern V . We show that there exists an upper bound on the inter-
arrival time of the privileged messages in V . We use this result to prove that
there exists an upper bound on on the inter-arrival time of all messages in V .

Lemma 2. If a bounded persistent sending pattern of heartbeats is sent on an
ADD channel, then there exists an upper-bound on the inter-arrival time of priv-
ileged heartbeats in the receiving pattern.

Proof. ADD channel properties (Sec. 3.1) guarantee an unknown upper-bound
R on the number of non-privileged messages between every pair of consecutive
privileged messages. In other words, in every sequence of 2(R + 1) consecutive
heartbeats in an ADD channel, at least two of them are privileged.

The sending pattern is bounded persistent; by definition, there exists some
upper-bound on the duration between the send times of every pair of consecutive
heartbeats. Let us denote this bound as B time units. This implies that the
upper-bound on time taken to send 2(R + 1) heartbeats in the sending pattern
is given by 2B(R+1) time units. In other words, the upper-bound between send
times of every pair of consecutive privileged heartbeats is 2B(R + 1) time units.

ADD channels also guarantee an unknown upper-bound D on the message
delay of privileged messages. Thus, the upper-bound on the difference between
message delays of two consecutive privileged messages is D time units. There-
fore, the upper-bound on time elapsed between the arrivals of two consecutive
privileged heartbeats is given by Ap = 2B(R + 1) + D time units, which is an
upper-bound on the inter-arrival times of privileged heartbeats. ut

Lemma 3. A bounded persistent sending pattern of heartbeats, when sent on
an ADD channel, yields a receiving pattern V with upper-bound on inter-arrival
time.

Proof. Let m be the earliest arriving privileged heartbeat in V . Let the arrival
time of m be tm. Let Vm ⊂ V be the set of all heartbeats in V that arrived
before, or at time tm. Let Vm+ ⊂ V be the set of all heartbeats in V that arrived
after, or at time tm. Note the following: (1) Vm ∪ Vm+ = V , (2) all privileged
heartbeats are in the set Vm+, and (3) heartbeat m is an element of both Vm

and Vm+.
The set Vm+ has all the privileged heartbeats. From Lemma 2, we know that

there exists some unknown upper bound Ap on inter-arrival time of privileged
heartbeats. Therefore, for every heartbeat g ∈ Vm+ there exists some privileged
heartbeat h ∈ Vm+ that arrives within Ap time units after the arrival of g.
Therefore, the upper-bound on inter-arrival time of heartbeats in Vm+ is Ap.

If |Vm| > 1, then the inter-arrival time of heartbeats in Vm is at most tm.
This follows from the fact that m ∈ Vm and m arrived at time tm.

From the above argument it follows that the upper-bound on inter-arrival
time for all the heartbeats that arrived before time tm is tm, and the upper-
bound on the inter-arrival time for all the heartbeats that arrived at or after time
tm is Ap. Therefore, the upper-bound on the inter-arrival time for all heartbeats
in V is given by A = max(Ap, tm). ut

5.4 Strong Completeness and Eventual Strong Accuracy

If there exists an upper-bound on the heartbeat inter-arrival time, then receiver
in Figure 1.3 satisfies Strong Completeness and Eventual Strong Accuracy.

Strong completeness. The strong completeness property states that every
correct process eventually, and permanently suspects all crashed processes.

Lemma 4. The heartbeat witness in Fig. 1.3 satisfies strong completeness.

Proof. A faulty process crashes after some finite time, and therefore, sends only
a finite number of heartbeats. Consider a run where process q crashes at time tc.
Let tf be the time of the last receipt of heartbeats sent by q to a correct process
p. After time tf , process p does not receive any heartbeat from q, therefore the
if condition in line 12 of receiver (Fig. 1.3) at p will evaluate to false in the
infinite suffix. In other words, if q is suspected by p after time tf , then p will
suspect q permanently thereafter.

At time tf , process p has some finite value of timer tmr. Since tmr eventually
expires, let it expire at time ts > tf . This implies that the if condition in line
17 of Fig. 1.3 evaluates to true at time ts. Therefore the correct process p adds
q to its suspect list at ts.

From the above arguments it follows that all correct processes eventually and
permanently suspect q, and hence, all crashed processes. ut

Eventual strong accuracy. Eventual strong accuracy states that for each run,
there exists a time after which no correct process is suspected by any correct
process.

Lemma 5. If there exists an upper-bound on the heartbeat inter-arrival time,
receiver in Fig. 1.3 satisfies eventual strong accuracy.

Proof. For a given run, for each pair of correct processes p and q, let the upper-
bound on inter-arrival time of heartbeats from q to p be A time units.

The thread receiver at process p maintains an estimate on the upper-bound
on the inter-arrival time of heartbeats (variable max inter arrival in Fig. 1.3)
from q. If the current estimate on the upper-bound on inter-arrival time, at some
time t, is equal to, or greater than A, then in the infinite suffix process p will
receive a heartbeat from q before timer tmr expires at p. Therefore, process q is
never suspected by p after time t.

However, if the current estimate on the upper-bound on inter-arrival time
is less than A, then timer tmr at process p may expire before p receives a
heartbeat from q, resulting in a false suspicion. However, within A time units
after such a false suspicion, p will receive a heartbeat from q. Consequently, p
will take q off the suspect list and increment the estimate on the upper-bound
on inter-arrival time. The estimate on the upper-bound on inter-arrival time can
be incremented only finitely many times before it exceeds A. Therefore, p can
suspect q only finitely many times before the estimate on the upper-bound on
inter-arrival time exceeds A. Therefore, in the infinite suffix following the last
instance of p suspecting q, process p never suspects process q.

Since p and q are any two correct processes, the above argument applies to
every pair of correct processes. In other words, there exists a time after which
no correct process is suspected by any correct process. ut

Theorem 6. The algorithm described in Sec. 4 implements an eventually perfect
(3P) failure detector in the ADD model.

Proof. From Lemmas 1 and 3, it follows that the heartbeat generator module
generator produces a bounded persistent sending pattern, which when transmit-
ted on an ADD channel, yields a receiving pattern with an unknown upper-bound
on the inter-arrival time.

From Lemmas 4 and 5 we conclude that if there exists an upper-bound on
the inter-arrival time in the receiving pattern, the heartbeat witness module
receiver satisfies strong completeness and eventual strong accuracy.

Thus, it follows that the algorithm described in Sec. 4 implements 3P in the
ADD model. ut

6 Conclusion

We have shown that one can implement eventually perfect failure detector (3P)
in the weak, unreliable, partially synchronous ADD model with unbounded mes-
sage loss as well as unbounded message delay for the majority of messages. Our
work demonstrates a proximate but essential understanding of unreliable, par-
tially synchronous communication via ADD Channels, and their sufficiency for
implementing 3P. This work is a fundamental step toward the ultimate goal

of understanding the minimal assumptions on reliability and partial synchrony
necessary to implement this oracle.

References

1. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

2. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32 (1985) 374–382

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Proceedings of the 15th International Symposium on Distributed Com-
puting, Springer (2001) 108–122

4. Aguilera, M.K., Chen, W., Toueg, S.: On quiescent reliable communication. SIAM
Journal on Computing 29 (2000) 2040–2073

5. Guerraoui, R., Kapa lka, M., Kouznetsov, P.: The weakest failure detectors to
boost obstruction-freedom. In: Proceedings of the 20th International Symposium
on Distributed Computing, Springer (2006) 399–412

6. Pike, S.M., Song, Y., Ghoshal, K.: Wait-free dining under eventual weak exclusion.
Technical Report TAMU-CS-TR-2006-5-1, Texas A&M University (2006)

7. Pike, S.M., Sivilotti, P.A.G.: Dining philosophers with crash locality 1. In: Pro-
ceedings of the 24th International Conference on Distributed Computing Systems,
IEEE (2004) 22–29

8. Song, Y., Pike, S.M.: Eventually k-bounded wait-free distributed daemons. Tech-
nical Report TAMU-CS-TR-2007-2-1, Texas A&M University (2007)

9. Guerraoui, R.: On the hardness of failure-sensitive agreement problems. Informa-
tion Processing Letters 79 (2001) 99–104

10. Larrea, M., Fernández, A., Arévalo, S.: On the implementation of unreliable failure
detectors in partially synchronous systems. IEEE Transactions on Computers 53
(2004) 815–828

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35 (1988) 288–323

12. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: Proceedings of the 33rd International Conference on Dependable
Systems and Networks, IEEE (2003)

13. Bertier, M., Marin, O., Sens, P.: Implementation and performance evaluation of an
adaptable failure detector. In: Proceedings of the 32nd International Conference
on Dependable Systems and Networks, IEEE (2002) 354–363

14. Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Proceedings of the 13th
International Symposium on Distributed Computing, Springer (1999) 34–48

15. Fetzer, C., Raynal, M., Tronel, F.: An adaptive failure detection protocol. In:
Proceedings of the 7th Pacific Rim International Symposium on Dependable Com-
puting, IEEE (2001) 146–153

16. Fetzer, C., Schmid, U., Süsskraut, M.: On the possibility of consensus in asyn-
chronous systems with finite average response times. In: Proceedings of the 25th
International Conference on Distributed Computing Systems, IEEE (2005) 271–
280

17. Larrea, M., Lafuente, A.: Communication-efficient implementation of failure de-
tector classes �P and �Q. In: Proceedings of the 19th International Symposium
on Distributed Computing, Springer (2005) 495–496

