
The Weakest Failure Detector for Wait-Free Dining under
Eventual Weak Exclusion∗

Srikanth Sastry
Computer Science and Engr

Texas A&M University
College Station, TX, USA
sastry@cse.tamu.edu

Scott M. Pike
Computer Science and Engr

Texas A&M University
College Station, TX, USA
pike@cse.tamu.edu

Jennifer L. Welch
Computer Science and Engr

Texas A&M University
College Station, TX, USA
welch@cse.tamu.edu

ABSTRACT
Dining philosophers is a classic scheduling problem for local
mutual exclusion on arbitrary conflict graphs. We establish
necessary conditions to solve wait-free dining under eventual
weak exclusion in message-passing systems with crash faults.
Wait-free dining ensures that every correct hungry process
eventually eats. Eventual weak exclusion permits finitely
many scheduling mistakes, but eventually no live neighbors
eat simultaneously; this exclusion criterion models scenarios
where scheduling mistakes are recoverable or only affect per-
formance. Previous work showed that the eventually perfect
failure detector (3P) is sufficient to solve wait-free dining
under eventual weak exclusion; we prove that 3P is also
necessary, and thus 3P is the weakest oracle to solve this
problem. Our reduction also establishes that any such din-
ing solution can be made eventually fair. Finally, the reduc-
tion itself may be of more general interest; when applied to
wait-free perpetual weak exclusion, our reduction produces
an alternative proof that the more powerful trusting oracle
(T) is necessary (but not sufficient) to solve the problem of
Fault-Tolerant Mutual Exclusion (FTME).

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—distributed applications; network operating
systems; D.4.5 [Operating Systems]: Reliability—fault
tolerance; F.1.1 [Computation by Abstract Devices]:
Models of Computation—relations between models; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—sequencing and
scheduling

General Terms
Algorithms, Reliability, Theory

∗This work was supported in part by NSF grant 0500265 and
by the Texas Higher Education Coordinating Board under
grants ARP 000512-0007-2006 and ARP 000512-0130-2007.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

Keywords
Dining Philosophers, Failure Detectors, Mutual Exclusion,
Partial Synchrony, Wait-Freedom

1. INTRODUCTION
We examine the Dining Philosophers problem (or dining,

for short), a classic problem in distributed scheduling. First
proposed by Dijkstra for a ring topology in [5], dining was
later generalized by Lynch in [10] for local mutual exclusion
on arbitrary conflict graphs. We explore a recent dimension
of this problem with the following primary result: wait-free
dining under eventual weak exclusion [12] is equivalent to
the class of eventually perfect failure detectors (3P) from
the Chandra-Toueg hierarchy [3].

Subsequent sections will explain the foregoing terms in
greater detail. For now, we introduce these concepts only
informally. The variant of dining we consider guarantees
that — in spite of potential process crashes — every correct
process competing for exclusive access to its critical section
eventually accesses its critical section (wait freedom), and
that eventually no two live neighbors are in their critical
sections simultaneously (eventual weak exclusion — 3WX).
The time for convergence to the exclusive suffix may vary
for each run and is not assumed to be known.

A failure detector can be viewed as a distributed oracle
that can be queried for (potentially incorrect) information
about process crashes [3]. Failure detectors can encapsulate
temporal uncertainties about the underlying system models
in which they are implemented in terms of the (un)reliability
of the suspect lists provided. The eventually perfect failure
detector – 3P – is one such failure detector. Informally,
3P always suspects crashed processes, but only eventually
stops suspecting correct processes. Thus, 3P is allowed to
make mistakes by wrongfully suspecting correct processes
finitely many times during any run. As before, the time for
convergence to the perfect suffix may vary for each run and is
not assumed to be known. Despite such unreliability, 3P is
sufficiently powerful to solve many crash-tolerant problems
including consensus [3], stable leader election [1], and crash-
locality-1 dining for perpetual exclusion [11].

It is also known that 3P is sufficient to solve wait-free
dining under 3WX [12, 13]. A natural follow-up question is
whether 3P is also necessary; that is, does 3P encapsulate
temporal assumptions equivalent to those encapsulated by
a wait-free scheduling service for eventual weak exclusion in
systems subject to crash faults? Our primary result answers
this question affirmatively: 3P is also necessary, and hence
is equivalent to wait-free dining under 3WX .

We establish the necessity of 3P using the standard proof
technique of reducing a candidate failure-detection oracle
to the target problem itself [2]; that is, we construct an
asynchronous transformation that extracts the oracle 3P
from an underlying black-box instance of wait-free dining for
eventual weak exclusion (denoted hereafter as WF-3WX).
As such, the primary technical challenge is demonstrating
how the temporal uncertainty implied by an unreliable (but
eventually perfect) oracle can be reduced to an unreliable
(but eventually exclusive) scheduler. In conjunction with
the sufficiency results from [12, 13], our necessity reduction
establishes that 3P is, in fact, the weakest failure detector
to solve WF-3WX .

A related paper on boosting obstruction-freedom [8] claims
that 3P is the weakest failure detector to solve wait-free
contention management (a special case of wait-free 3WX).
Although the equivalence relation between 3P and wait-free
contention management happens to be true, the reduction
used to establish the equivalence is actually flawed, as is the
related proof of correctness. Our paper reveals a subtle, but
important, vulnerability in [8], and provides an alternate
reduction to remedy the error.

Our reduction also leads to two secondary results which
are briefly stated and explained in the next two paragraphs.
Both results are tangential to the primary arc of this paper,
but we present them for completeness as relevant implica-
tions of the present research.

First, any WF-3WX dining solution can be transformed
into an augmented algorithm satisfying eventual 2-fairness.
As defined in [13], eventual k-fairness ensures that, for each
run, there exists a time after which no process can enter
its critical section more than k consecutive times while any
correct neighbor remains hungry. The construction in [13]
demonstrates that asynchronous systems augmented with
3P are sufficient to solve WF-3WX dining with eventual
2-fairness.1 Thus, beginning with any solution toWF-3WX
dining, one can apply the reduction in our paper to extract
an implementation of 3P, which can then be used in the
construction from [13] to produce a WF-3WX dining solu-
tion with the stronger service property of eventual 2-fairness.
This two-step construction, however, might not be optimal;
if a 3P-based transformation to eventual 1-fairness exists,
for example, then solutions for WF-3WX dining can be
converted into eventually lock-step schedulers by using a
clique for the dining conflict graph.

Our other secondary result concerns the actual reduction
algorithm itself, which may be of more general interest as a
widget for proving the necessity of other failure detectors for
related synchronization problems. For example, a paper [4]
by Delporte-Gallet et al. proved in 2005 that the Trusting [4]
and Strong [3] failure detectors (T +S) are sufficient to solve
wait-free mutual exclusion, a special case of dining where the
conflict graph is a clique. Their result considered the stricter
criterion of perpetual weak exclusion — �WX — for which
live neighbors never eat simultaneously; as such, (T +S) can
implement wait-free and mistake-free schedulers. The same
paper [4] proved that T is necessary for wait-free mutual
exclusion, but it is still unknown whether the more powerful
composition of (T +S) is necessary too. Our paper presents
a reduction that extracts the oracle 3P from any instance

1The actual construction is for message-passing systems, but
since it only uses bounded variables and bounded-capacity
channels, the result also applies to shared-memory systems.

of WF-3WX dining. If applied to any wait-free instance of
perpetual weak exclusion, however, the reduction extracts
the more powerful oracle T instead. This application of
our reduction provides an alternate proof of the necessity
of T . As described in Section 9, our reduction can also be
amended (under �WX) to extract an oracle slightly more
powerful than T , which implies the following negative result:
T is insufficient to solve wait-free mutual exclusion by itself.

2. ON EVENTUAL WEAK EXCLUSION
Eventual weak exclusion (3WX) has been a frequently

overlooked and under-explored safety property. Although a
full defense is beyond the scope of this paper, the following
examples illustrate the practical utility of 3WX . In partic-
ular, 3WX provides a basis for crash-tolerant applications
in scenarios where safety violations are either recoverable or
only affect performance (rather than correctness).
Duty Cycle Scheduling. Consider wireless sensor net-
works (WSN) that must cover a given surveillance environ-
ment. Such WSNs typically have finite power supplies; as
such, every node will eventually crash due to power deple-
tion. Ideally, the life-span of the WSN should greatly exceed
the life-span of its constituent nodes. With node redun-
dancy, a WSN can employ schedulers to schedule a minimal
set of nodes to be on duty to cover the environment, while
the remainder can sleep to conserve energy.

In this scenario, the resources being shared are the cover-
age areas for which nodes are on duty. Nodes that volunteer
to be on duty can be modeled as contending for exclusive
access to this shared resource, and nodes that are on duty
can be modeled as being in their critical section. Ideally,
schedulers for such WSNs should satisfy wait-freedom and
perpetual weak exclusion. Wait-freedom guarantees sensor
coverage despite node crashes whereas perpetual weak exclu-
sion maximizes the network life-span by scheduling a mini-
mal set of nodes to be on duty.

The underlying system environment for such WSNs is of-
ten partially synchronous [7]. It is reasonable to expect the
partial synchrony in such environments to be sufficient to
implement 3P, but insufficient to implement stronger ora-
cles like the trusting failure detector (T)2. However, earlier
work demonstrates that 3P is insufficient to achieve both
wait-freedom and perpetual weak accuracy [11], whereas T
is necessary to achieve the same [4]. So is it possible to
achieve wait-freedom and maintain an extended network life-
span despite such limited synchrony?

We claim that the answer is yes. We know that 3P can
implement a wait-free scheduler under eventual weak exclu-
sion (3WX) [12]. Although such schedulers guarantee com-
plete sensor coverage through wait-freedom, they may make
finitely many mistakes by scheduling redundant nodes to go
on duty concurrently. These mistakes, however, only result
in redundant coverage, which impacts the performance, but
not the correctness, of WSNs. Eventually only a minimal set
of nodes are scheduled to be on duty, thereby maximizing
network life-span.
Recoverable Resources. Recall that wait-free schedulers
for perpetual weak exclusion (�WX) may be impossible to
implement in some systems [11]. However, not all applica-
tions in such systems require �WX . Consider systems with
recoverable resources where applications are scheduled using

2The trusting oracle is discussed in detail in Section 8.

a wait-free scheduler with 3WX . In such systems, exclu-
sion violations can often be modeled as transient faults. For
example, if two processes perform non-atomic updates on
shared resources, the result may be viewed as an arbitrary
corruption of the shared data. In the presence of such sched-
uling errors, consistent data values may be restored via data
redundancy, rollback recovery, or even self-stabilization [6].
As such, 3WX is still viable when �WX is not possible.
Contention Managers. Contention Managers (CM) [8]
are wait-free eventually exclusive (3WX) protocols which
can boost the liveness properties of obstruction-free software
transactional memory (STM) implementations. Obstruction
freedom guarantees progress only if a transaction executes
in isolation for a “long enough” period of time. In high-
contention systems, where multiple processes may attempt
to execute concurrent transactions, there may be no guar-
antee on progress. However, CMs can eliminate such con-
tention as follows: clients wanting to execute a transaction
first request permission from the CM and execute the trans-
action only upon being permitted by the CM. For a finite
prefix, the CM may permit multiple clients to execute their
transactions concurrently which may result in unsuccessful
transactions. However, eventually, the CM permits just one
client to execute its transaction at a time. By obstruction
freedom, such transactions are guaranteed to succeed. Inso-
far as the CM guarantees that every client with a pending
transaction is eventually permitted to execute its transac-
tion, the liveness property of the STM implementation is
boosted from obstruction freedom to wait freedom. Thus,
CMs show the practical utility of 3WX as a mechanism for
funneling high-contention systems into contention-free sys-
tems with stronger liveness properties.

3. ON CONTENTION MANAGEMENT
As described earlier, contention managers are wait-free

eventually exclusive protocols in shared memory systems
which boost the liveness properties of software transactional
memory (STM) implementations. A result in [8] states that
3P is the weakest failure detector to convert an obstruction
free shared-object implementation into a wait-free one.

Although the result from [8] is true, the construction (and
the accompanying proof) provided in [8] to extract 3P from
a wait-free contention manager do not apply universally
(i.e., the transformation is not black-box based). Specifi-
cally, there exist certain implementations of wait-free con-
tention managers from which 3P cannot be extracted using
the construction in [8]. Therefore, insofar as the construc-
tion does not work for any black-box implementation of wait-
free contention managers, the construction, the result, and
the proof of correctness in [8] are not universal.

The necessity of 3P to implement a wait-free contention
manager is demonstrated in [8] by extracting 3P from a
black-box implementation of a wait-free contention man-
ager. The construction is as follows: For each ordered pair
of processes (p, q) where p is monitoring the liveness of q,
the 3P module is implemented by an instance of a wait-
free contention manager in which p and q participate. Upon
initialization, q sends heartbeats to p at regular intervals
and requests permission from the contention manager for
obstruction-free access. Upon being granted permission by
the contention manager, q enters the section of the code that
requires obstruction freedom (called the “critical section”)
and never exits.

Process p, on the other hand, upon receiving a heartbeat
from q, trusts q as being correct and proceeds to request
permission from the contention manager for obstruction-free
access. Upon being granted permission by the contention
manager, p enters its “critical section” and immediately ex-
its its “critical section” (allowing the contention manager to
permit q to enter its respective critical section), p suspects q,
and waits for another heartbeat from q to start the sequence
of actions all over again.

The basis for correctness is the following: If q crashes,
then p will gain access to its own critical section, and hence
suspect q. Since p will stop receiving heartbeats from q,
p will permanently suspect q. On the other hand, if q is
correct, then the wait-free contention manager eventually
provides exclusive access to a single process, eventually q
is permanently in its critical section and p is permanently
locked out. Hence, p eventually trusts q forever.

Note that the correctness of the 3P implementation as-
sumes that wait-free contention managers guarantee even-
tual exclusion even in executions where a process never ex-
its the obstruction-free section of its code. This, however,
may not be the case with all wait-free contention manager
implementations.

For instance, consider the implementation of wait-free din-
ing under 3WX in [12]. This implementation can be used
as a wait-free contention manager (because it satisfies the
specifications for a wait-free contention manager). However,
the implementation in [12] guarantees exclusive access to the
“critical section” in the suffix of an execution only after (1)
the failure detector 3P stops making mistakes, and (2) each
process that entered its critical section before 3P stopped
making mistakes has also exited.

Note that if the implementation from [12] is used as the
wait-free contention manager for the 3P construction in [8],
and the aforementioned (correct) process q enters its critical
section during the non-exclusive prefix of the execution and
never exits, then the 3P construction in [8] cannot guaran-
tee an exclusive suffix in which p is permanently locked-out.
In other words, p could access its critical section infinitely
often, and hence suspect q infinitely often, thereby violating
the 3P specifications.

This paper addresses this vulnerability and provides a con-
struction which implements 3P in all black-box solutions to
dining under 3WX (including the solution in [12]). Specif-
ically, this paper demonstrates a more general equivalence
result by proving that the wait-free 3WX variant of the
dining philosophers problem, which is a generalization of
mutual exclusion (which in turn is a generalization of con-
tention management) is equivalent to 3P.

4. TECHNICAL FRAMEWORK
We consider asynchronous systems where message delay,

clock drift, and relative process speeds are unbounded. Ad-
ditionally, we posit a discrete global clock T whose range of
clock ticks is the set of natural numbers IN. T is merely a
conceptual device and inaccessible to processes in the sys-
tem.
Processes. The system has a finite set of processes Π. Pro-
cesses execute actions as atomic steps. In each atomic step,
a process receives at most one message from each process,
makes a state transition, and sends at most one message to
each process.

Channels. Processes send and receive messages to each
other through channels. Processes are assumed to be con-
nected to all the processes in the system by reliable non-
FIFO channels; every message sent to a correct process is
eventually received by that process, and messages are nei-
ther lost, duplicated, nor corrupted.
Runs. A run consists of a potentially infinite sequence of
enabled steps taken by processes while executing an algo-
rithm. For terminating algorithms, processes are modeled
as having reached a final state Sf followed by an infinite se-
quence of (no-op) steps so that the process loops in state Sf .
Note that not all processes may execute an infinite sequence
of steps. Only correct, i.e., non-faulty, processes execute an
infinite sequence of steps.
Faults. In each run, processes are either correct or faulty.
Correct processes execute actions according to their specifi-
cation, and never fail. Faulty processes, on the other hand,
fail after finite time. Processes can fail only by crashing,
which occurs when a process ceases execution without warn-
ing and never recovers. Any process that has not crashed
is considered to be live. Thus, correct processes are always
live, and faulty processes are live until they crash.
Failure Detectors. An unreliable failure detector can be
viewed as a distributed oracle that can be queried for (pos-
sibly incorrect) information about process crashes [3]. Each
process has access to its local detector module that outputs a
set of processes currently suspected of having crashed. Un-
reliable failure detectors are characterized by the kinds of
mistakes they can make. Mistakes include false-negatives
(i.e., not suspecting crashed processes) and false-positives
(i.e., wrongfully suspecting correct processes). Each fail-
ure detector class is defined by two properties: complete-
ness (which restricts false negatives) and accuracy (which
restricts false positives).

The eventually perfect failure detector 3P satisfies [3]:
• Strong Completeness: Every crashed process is eventu-
ally and permanently suspected by all correct processes.
• Eventual Strong Accuracy: For every execution, there
exists a time after which no correct process is suspected by
any correct process.

Thus, 3P may suspect correct processes finitely many
times in any execution. However, 3P must converge at some
point, after which the oracle provides reliable information
about process crashes. The time to convergence may be
unknown and may vary from run to run.
Dining. A dining instance is modeled by an undirected
conflict graph DP = (Π, E), where each vertex p ∈ Π rep-
resents a diner, and each edge (p, q) ∈ E represents a set of
resources shared between neighbors p and q. Each diner is
either thinking, hungry, eating, or exiting. The above four
states correspond to the four basic phases of a participat-
ing process: executing independently, requesting shared re-
sources, utilizing shared resources in a critical section, and
relinquishing its exclusive access to the shared resources, re-
spectively.

Initially, every process (diner) is thinking. Although pro-
cesses may think forever, they are permitted to become hun-
gry at any time. Upon being scheduled to eat, the process
enters its critical section. Eating is always finite (but not
necessarily bounded) for correct processes; such processes
must transit from eating to exiting in finite time. Similarly,
a correct dining solution guarantees that exiting is finite too;
an exiting process eventually transits to thinking. Hungry

neighbors are said to be in conflict, because they compete for
a set of shared but mutually exclusive resources. A correct
solution to wait-free dining under eventual weak exclusion
(3WX) is an algorithm that schedules diner transitions from
hungry to eating, subject to the following two requirements:
• Eventual Weak Exclusion 3WX : For every run, there
exists a time after which no two live neighbors eat simul-
taneously. During any run, 3WX can make finitely many
scheduling mistakes, but eventually converges to an infinite
suffix during which live neighbors never eat simultaneously.
The time to convergence may vary from one run to another
and may be unknown. Thus, 3WX may be viewed as even-
tual safety [6].
• Wait-Freedom: If correct processes eat for finite time,
then every correct hungry process eventually eats, regardless
of how many processes crash. Wait-freedom [9] guarantees
individual progress in the presence of crash faults. As such,
wait-free exclusion algorithms never starve correct hungry
processes.

5. METHODOLOGY AND OVERVIEW
To show that 3P is necessary to solve wait-free dining

under 3WX (denoted WF-3WX), we present a reduction
of 3P to the problem of WF-3WX .

The proof technique works as follows. Suppose, for the
purpose of contradiction, there exists a failure detector D
which is strictly weaker than 3P and yet can also solve
WF-3WX . Using a black-box solution to WF-3WX , we
construct a failure detector that implements the strong com-
pleteness and eventually strong accuracy properties of 3P.
By hypothesis, D can implement WF-3WX , but (by con-
struction)WF-3WX can, in turn, implement 3P. By tran-
sitivity, D can also implement 3P, thereby contradicting the
assumption that D is strictly weaker than 3P. We conclude
that 3P is, in fact, the weakest oracle to solve WF-3WX .

5.1 Preliminary Construction
The key idea of our construction is to convert wait-freedom

and eventual weak exclusion into an eventually reliable time-
out mechanism for detecting crash faults. Consider two pro-
cesses p and q, where p is correct and p is monitoring q. Let p
and q compete for exclusive access to their respective critical
sections infinitely often in a given instance ofWF-3WX . If
q is faulty, then wait-freedom guarantees that p will eat in-
finitely often after q crashes. If q is correct, however, then
3WX guarantees an infinite suffix during which p does not
eat until q has exited eating. Every time q eats, let q send
a ping and exit only after receiving an ack from p. Subse-
quently, when p transits to eating, p has a basis for trusting
q if p had received a ping from q since the last time p ate.

However, WF-3WX does not guarantee fairness insofar
as it is possible for p to eat an unbounded number of times
between each time q eats; this allows p to suspect q in-
finitely often. To circumvent this, p and q compete in two
WF-3WX instances. For ease of understanding, we view
each process as consisting of two threads which participate
in two dining instances DX 1 and DX 2. The threads p.w0

and p.w1 in p are called witness threads, and the threads
q.s0 and q.s1 in q are called subject threads (simply because
p is ‘witnessing’ the liveness of q).

The threads p.wi and q.si participate in the dining in-
stance DX i, where i ∈ {0, 1}. Hereafter, DX i refers to one
of DX 0 and DX 1, q.si refers to one of the subject threads

var wi∈{0,1}.state ← thinking Initially, the witnesses are thinking

boolean switch ← 0 Witness w0 will be first to become hungry

boolean havePingi∈{0,1} ← false Set to true when a ping is received; used to determine suspicion

boolean suspectq ← true Initially suspect q

1 : {(wi.state = thinking) ∧ (w1−i.state = thinking) ∧ (switch = i)} −→ Action Wh

2 : wi.state ← hungry Become Hungry in DX i

3 : {(wi.state = eating)} −→ Action Wx

4 : suspectq ← ¬havePingi Trust q iff ping has been received

5 : havePingi ← false
6 : switch ← (1− i) Enable subject p.w1−i to become hungry

7 : wi.state ← exiting Exit eating in DX i

8 : {upon receive 〈ping〉 from subject q.si} −→ Action Wp

9 : havePingi ← true
10 : send 〈ack〉 to subject q.si

Alg. 1: Actions for the witness p.wi∈{0,1} in dining instance DX i. Thread p.w1−i denotes the other witness
thread in p, and q.si denotes the subject thread at process q participating in DX i. Process q is suspected if
suspectq is true.

q.s0 and q.s1, and p.wi refers to one of the witness threads
p.w0 and p.w1, respectively. The notations DX 1−i, q.s1−i,
and p.w1−i refer to the peer dining instance, subject thread,
and witness thread of DX i, q.si, and p.wi, respectively.
Conceptually, DX 0 and DX 1 implement the local detection
module at p wherein p monitors the liveness of q. Imple-
menting a similar local detection module at q to monitor
p requires two more dining instances wherein the witness
versus subject roles of p and q are reversed.

Although logically distinct, the subject threads q.s0 and
q.s1 are implemented as a single stream of physical execu-
tion. More specifically, each subject thread is a distinct set
of actions, the union of which is executed under interleaving
semantics by process q. Consequently, the variables used by
q.s0 and q.s1 are mutually accessible to each other. As such,
the failure semantics are also correlated; that is, if process q
crashes, then both subject threads q.s0 and q.s1 also crash.
Similar remarks apply to the witness threads p.w0 and p.w1

executed by process p.
The witness threads in p take turns becoming hungry, eat-

ing, and exiting in their respective dining instances. Witness
p.w0 becomes hungry, transits to eating, determines if q was
live, and then exits. After p.w0 exits eating, p.w1 becomes
hungry, transits to eating, determines if q was live, and then
exits. After p.w1 exits eating, p.w0 becomes hungry again,
and so on.

The subject threads in process q, on the other hand, coor-
dinate their eating sessions via the following hand-off mech-
anism. Subject q.s0 becomes hungry, and after it transits to
eating, it does not exit until q.s1 becomes hungry and starts
eating as well. Similarly, after q.s1 transits to eating, q.s1

does not exit eating until q.s0 (which had exited earlier)
becomes hungry and starts eating again. In other words,
the beginning and ending of each subject’s eating session
overlaps with the other subject’s eating session. This hand-
off mechanism ensures the following: in the suffix where
WF-3WX has stopped making scheduling mistakes, wit-
ness p.wi cannot eat twice consecutively in dining instance
DX i without q.si eating at least once in the same dining
instance DX i. This is illustrated in Fig. 1.

Figure 1: Witness and subject threads in the exclu-
sive suffix. The white boxes denote eating sessions
and the gray regions denote the overlap in subjects’
eating sessions.

Every time q.si eats in any dining instance, it sends a ping
to p.wi and does not exit until an ack has been received. In
other words, when q.si exits eating, p.wi has recorded that
a ping has been received from q.si. If q is correct, then in
the infinite suffix after 3WX has converged, every time p.wi

eats in its dining instance, p.wi has already received a ping
from q.si previously, and hence trusts q for the infinite suffix.

6. THE REDUCTION ALGORITHM
Let Π be a finite system of processes. For each ordered

pair of processes, (p, q), we implement an eventually per-
fect failure detector 3P using two instances of a black-box
solution toWF-3WX : DX 0, and DX 1 as described in Sec-
tion 5.1. Actions for the witness threads and the subject
threads are presented in Alg. 1 and Alg. 2, respectively.
The witness and subject threads participate in a ping-ack
protocol.

Initially, process p suspects q, and the witness threads
are initialized to be thinking. The witness thread p.w0 then
becomes hungry inDX 0 (ActionWh). After being scheduled

var si∈{0,1}.state ← thinking Initially, the subjects are thinking

boolean trigger ← 0 Initially, set only subject s0 to become hungry

boolean pingi∈{0,1} ← true Initially, enable the subject to send a ping upon eating

1 : {(si.state = thinking) ∧ (trigger = i)} −→ Action Sh

2 : si.state ← hungry Become hungry in the dining instance DX i

3 : {(si.state = eating) ∧ (s1−i.state 6= eating) ∧ (pingi = true)} −→ Action Sp

4 : send 〈ping〉 to p.wi Send a ping to peer witness at p and wait for an ack

5 : pingi ← false

6 : { upon receive 〈ack〉 from p.wi} −→ Action Sa

7 : trigger ← (1− i) Schedule the other subject to become hungry

8 : {(si.state = eating) ∧ (s1−i.state = eating) ∧ (trigger = 1− i)} −→ Action Sx

9 : pingi ← true Enable sending a ping next time

10 : si.state ← exiting Exit eating in DX i

Alg. 2: Actions for the subject q.si∈{0,1} in dining instance DX i. Subject thread q.s1−i denotes the other
subject thread in q, and p.wi denotes the witness thread at process p participating in DX i.

to eat by the underlying WF-3WX protocol, p.w0 checks
to see if haveP ing0 is true: if so, p trusts q; otherwise it
suspects q. After determining the liveness of q, p.w0 exits
DX 0. After p.w0 transits back to thinking, p.w1 becomes
hungry in DX 1 (Action Wh). After being scheduled to eat
by the underlyingWF-3WX protocol, p.w1 checks to see if
haveP ing1 is true: if so, p trusts q; otherwise, it suspects q
(Action Wx). After determining the liveness of q, p.w1 exits
DX 1. Now, p.w0 becomes hungry in DX 0, and so on. Also,
each ping is acknowledged by a single ack (Action Wp).

The subject threads are initialized to be thinking initially.
The subject thread q.s0 immediately transits to becoming
hungry in DX 0 (Action Sh), and is eventually scheduled to
eat (by wait-freedom). When q.s0 is scheduled to eat, it
sends a ping to the peer witness (Action Sp), waits for an
ack, and, upon receiving the ack (in Action Sa), schedules
q.s1 to become hungry in DX 1 (by setting trigger to 1).
When q.s1 starts eating in DX 1, q.s0 exits DX 0 (Action Sx).
The subject thread q.s1 then follows the same sequence of
steps as q.s0.

7. CORRECTNESS PROOFS
Proof Structure: We prove strong completeness by show-

ing that if the subjects crash, then the witnesses eat in-
finitely often (Lemma 11) and their havePingi variables be-
come continuously false. Therefore, all crashed processes are
eventually and permanently suspected.

We prove eventual strong accuracy by showing that if the
subjects are correct, then eventually, every time a witness
is scheduled to eat, its havePingi variable is true. There-
fore, all correct processes are eventually and permanently
trusted. In order to prove eventual strong accuracy, we
show that witnesses and subjects eat infinitely often (Lem-
mas 11 and 7, respectively), which enables pings to be sent
infinitely often. In fact, we show that pings and acks are sent
only when subjects are eating (Lemma 5) and not otherwise
(Lemma 3). But note that subjects can eat infinitely often
only if every hungry subject eats (Lemma 1), and eating is
finite (Lemma 6). Additionally, witnesses are throttled from
eating an unbounded number of times between subjects’ con-
secutive eating sessions. This follows from the observation
that some witness is always thinking (Lemma 9) and even-

tually some subject is always eating (Lemma 8), and hence
each witness will have to wait until one of the subjects ex-
its eating before it can eat. Note that unlike the subjects,
witnesses take turns eating (Lemmas 10 and 12). We now
demonstrate correctness through a formal, rigorous proof.

Formal Proof: Consider a run of an asynchronous system
augmented with a solution toWF-3WX . Consider two pro-
cesses p and q in this run where p is correct. Let p monitor
q in this run. Process p has two witness threads p.w0 and
p.w1 which execute the action system in Alg. 1, and pro-
cess q has two subject threads q.s0 and q.s1 which execute
the action system in Alg. 2. Let DX 0 be the WF-3WX
instance shared between p.w0 and q.s0, and let DX 1 be the
WF-3WX instance shared between p.w1 and q.s1.

We use two terms in the proof that merit definition here:
Eating session: Each eating session of a thread is the du-
ration between a time te when the process starts eating and
the first time tx > te when the thread exits.
Hungry-Eating session: Each hungry-eating session of a
thread is the duration between a time th when the thread
becomes hungry and the first time tx > th when the thread
exits.

Lemma 1. If process q is correct, and a subject q.si

becomes hungry in DX i, then q.si eventually eats in DX i.

Proof. Note that q.si and p.wi are neighbors in the din-
ing instance DX i. From Action Wp we know that if p.wi is
scheduled to eat in DX i, then p.wi will exit in finite time;
that is, p.wi eats only for finite time. From the wait-freedom
property of DX i and the finite eating sessions of p.wi, it fol-
lows that if q is correct and q.si becomes hungry in DX i,
then eventually q.si eats in DX i.

Lemma 2. The following invariant holds: (si.state 6=
eating)⇒ (pingi = true).

Proof. Initially, si.state = thinking and pingi = true.
Therefore, the invariant holds initially. The only actions
that change the value of pingi are Actions Sp and Sx. Action
Sp sets pingi to false while si.state = eating. Therefore, the
invariant holds true after si executes Sp. Action Sx sets
pingi to true before si exits eating. Hence, the invariant
holds true after Sx is executed.

Lemma 3. When (si.state 6= eating) ∨ (pingi = true)
there are no messages in transit between q.si and p.wi.

Proof. For the purpose of contradiction, we assume that
in some run there is a message in transit between q.si and
p.wi when (si.state 6= eating)∨ (pingi = true). Consider the
earliest time tf when (si.state 6= eating)∨(pingi = true) and
some message is in transit between q.si and p.wi.

Since q.si sends only pings and p.wi sends only acks, the
message in transit at time tf is either a ping or an ack.

If a ping is in transit at time tf , then the ping must have
been sent by q.si at time tp < tf . Alternatively, if an ack
is in transit at time tf , then from Action Wx we know that
the ack must have been sent in response to a ping sent by
q.si at time tp < tf . From Action Sp, we know that at time
tp, si.state = eating and pingi = true.

Let q.si be in its kth hungry-eating session at time tp. Let
this hungry-eating session begin at time th < tp. From Ac-
tion Sh we know that trigger = i at time th. By hypothesis,
we know that in the kth hungry-eating session there is no
ack in transit to q.si until time tp, because tp < tf and un-
til tp, pingi = true. Therefore, until time tp, q.si does not
execute Action Sa. In other words, at time tp, q.si is eating
and trigger = i.

However, at time tf , either q.si is not eating, or pingi =
true. Therefore, at some time between tp and tf , pingi be-
comes true or q.si exits eating. In fact, pingi is set to true
only when q.si exits eating. Therefore, q.si exits eating be-
tween time tp and tf . Let such time be tx.

Note that q.si can exit eating only when trigger = 1 − i,
but we know that trigger = i at time tp. Therefore, between
time tp and tx, trigger is set to 1− i; that is, in the interval
[tp, tx], q.si receives an ack. This ack could not be for the
ping sent at time tp because, at time tf > tx, either the
ping sent at tp is still in transit, or the ack generated for
the ping sent at time tp is still in transit. Therefore, the
ack received in the interval [tp, tx] must have been for a
ping sent in q.si’s (say) jth eating session where j < k.
This is possible only if either the ping sent in the jth eating
session, or the ack generated for that ping was in transit
between q.si’s jth eating session and kth eating session. This
contradicts our earlier assumption that tf was the earliest
time at which a message is in transit between q.si and p.wi

when (si.state 6= eating) ∨ (pingi = true).

Lemma 4. The following invariant holds: (si.state =
hungry)⇒ (trigger = i).

Proof. Subject q.si becomes hungry by executing Action
Sh which is enabled only when trigger = i. The only action
that changes the value of trigger to 1− i is Action Sa. But we
know from Lemma 3 that there are no messages in transit
to q.si when si.state 6= eating. Therefore, q.si does not
execute Action Sa while si.state = hungry. Hence (si.state =
hungry)⇒ (trigger = i).

Lemma 5. If p and q are correct, then during every
eating session of subject q.si (a) q.si sends exactly one ping
to witness p.wi, and (b) q.si receives exactly one ack from
p.wi after q.si sends the ping to p.wi.

Proof. From Lemmas 2 and 4 we know that when q.si

is hungry pingi = true and trigger = i. Therefore, when q.si

transits to eating, and before it executes any action while it
is eating, pingi = true and trigger = i.

From Lemma 3 we know that there are no messages in
transit between q.si and p.wi while q.si is hungry. Note
that p.wi sends an ack to q.si only upon receiving a ping
from q.si. Therefore, when q.si transits to eating, there is
no ack in transit to q.si until after q.si sends a ping to p.wi.

Consequently, when q.si transits to eating, either Action
Sp is enabled at q.si, or Action Sp is NOT enabled at q.si

(but no other action is enabled):

• Case 1. If Action Sp is enabled when q.si transits to
eating, then Action Sp is executed. Executing Action
Sp disables the guard for the action, so it cannot be
executed again until pingi = true, but pingi becomes
true only when q.si is exiting. Hence, q.si sends ex-
actly one ping to witness p.wi.

• Case 2. If Action Sp is disabled when q.si transits
to eating, then s1−i.state = eating (because pingi =
true, si.state = eating, and Action Sp is disabled). If
s1−i.state = eating, trigger = i, and si.state = eating,
then Action Sx is enabled at q.s1−i. When q.s1−i ex-
ecutes Action Sx, q.s1−i exits eating, and this enables
Action Sp at q.si. This now reduces to Case 1.

Therefore, when q.si transits to eating, it sends exactly
one ping to witness p.wi.

Note that q.si does not exit eating until trigger = 1− i.
The only action that sets trigger to 1− i is Action Sa. There-
fore, q.si does not exit eating until it executes Action Sa at
least once. However, since q.si sends exactly one ping to
p.wi, and this ping arrives at p.wi in finite time, p.wi exe-
cutes Action Wp exactly once, and sends exactly one ack to
q.si. This ack arrives at q.si in finite time. Since q.si does
not exit until it has executed Action Sa at least once, when
q.si receives the ack by executing Action Sa, q.si is still in
its current eating session.

Lemma 6. If p and q are correct, then q.si’s eating ses-
sion is always finite.

Proof. From Lemma 4 we know that when q.si is hun-
gry, trigger = i. By inspecting the action system in Alg. 2 we
know that trigger is set to 1− i only in Action Sa (in which
q.si receives an ack). Therefore, it follows that trigger = i
from the time q.si transits to becoming hungry to the time
that q.si receives an ack from p.wi in the eating session that
immediately follows.

However, from Lemma 5, we know that during each eating
session, subject q.si sends exactly one ping to p.wi (by exe-
cuting Action Sp) and subsequently receives exactly one ack
from p.wi. Therefore, when q.si executes Action Sp (in its
eating session), trigger = i. By applying Lemma 4 to q.s1−i,
we know that when q.si executes Action Sp, s1−i.state 6=
hungry.

Inspecting the guard for Action Sp reveals that when q.si

executes Action Sp, s1−i.state 6= eating. Therefore, when
q.si executes Action Sp, q.s1−i is either exiting or thinking.

After q.si receives the (only) ack in its eating session3,
trigger = 1− i (from Action Sa). Since q.s1−i cannot be-
come hungry until trigger = 1− i, it follows that q.s1−i is
still either exiting or thinking when q.si executes Action Sa.

3Note that if p crashes during q.si’s eating session, then
q.si may eat forever. This, however, does not affect the
correctness of the algorithm. A more detailed discussion
follows in Section 8.

Since exiting is finite in DX 1−i, eventually q.s1−i is think-
ing. Since q.si cannot exit until q.s1−i is eating (from Action
Sx), eventually q.s1−i is thinking and trigger = 1− i in q.si’s
current eating session.

However, when q.s1−i is thinking and trigger = 1− i,
Action Sh is enabled at q.s1−i. Therefore, q.s1−i eventu-
ally becomes hungry in q.si’s current eating session. From
Lemma 1 we know that q.s1−i eventually eats. When q.s1−i

transits to eating, Action Sx is enabled at q.si. Therefore,
q.si eventually exits eating.

Lemma 7. If p and q are correct, then q.s0 and q.s1

eat infinitely often.

Proof. Let k be the number of times a subject q.si eats
in a given execution. We prove the above lemma by induc-
tion on k.

Base Case: Subjects q.s0 and q.s1 eat at least once (here
k = 1).

Initially, subjects q.s0 and q.s1 are both thinking, and
trigger = 0. Therefore, initially Action Sh is enabled at
q.s0. Eventually q.s0 executes Action Sh and q.s0 becomes
hungry. From Lemma 1, q.s0 eventually eats.

From Lemma 6 we know that q.s0 eventually exits. How-
ever, from Action Sx we know that when q.s0 exits, q.s1 is
eating. Therefore, eventually q.s1 eats.

Inductive hypothesis: Let q.si eat k times.
We now show that if q.si eats k times, then q.si eats k +1

times. Let q.si be in its kth eating session. From Lemma 6
we know that q.si eventually exits its kth eating session.
However from Action Sx we know that when q.si exits eat-
ing, q.s1−i is eating.

From Lemma 6 we know that q.s1−i exits its eating ses-
sion. But from Action Sx we know that when q.s1−i exits
eating, q.si is eating. Since we already know that q.si exits
its kth during q.s1−i’s current eating session, it follows that
q.si must be in its k + 1st eating session when q.s1−i exits
its current eating session.

Thus, by induction, it follows that subjects q.s0 and q.s1

eat infinitely often

Lemma 8. If q is correct, then eventually, at any given
time, some subject at q is eating. In other words, the follow-
ing suffix invariant holds: (s1.state = eating) ∨ (s0.state =
eating).

Proof. Let E ≡ (si.state = eating) ∨ (si.state = eating).
From Lemma 7 we know that subjects q.s0 and q.s1 eat
infinitely often. Therefore, E must be true infinitely often.

Let E be true at some time tE . We now show that no
action in Alg. 2 falsifies E.

Action Sh. If Action Sh is enabled at q.si at time tE ,
then s1−i.state = eating at tE (because E is true at time tE).
Executing Sh at q.si does not change the state of q.s1−i,
hence E is true after q.si executes Action Sh.

Actions Sp and Sa. These actions do not change the
states of q.s0 or q.s1. Therefore, if E is true before either
action is executed, then it is true after that action is executed
is execute as well.

Action Sx. If Action Sx is enabled at q.si, then q.s1−i

is eating at time tE . Action Sx at q.si does not change the
state of q.s1−i. Therefore, after Action Sx is executed at
q.si, s1−i.state = eating. Hence, E is true after executing
Action Sx.

Thus it is shown that eventually E becomes true, and
after it becomes true it is never falsified.

Lemma 9. At any given time t, some witness at p is
thinking. In other words, the following invariant must hold:
(w0.state = thinking) ∨ (w1.state = thinking).

Proof. At time t = 0, both witnesses are thinking. There-
fore, ((w0.state = thinking) ∨ (w1.state = thinking)) is true,
and the invariant holds at time t = 0. Let ((w0.state =
thinking)∨(w1.state = thinking)) be true at some time t′ ≥ t.
We then show that a witness p.wi executing any action in
Alg. 1 maintains the above invariant.

Action Wh. For Action Wh to be enabled, p.w1−i must
be thinking, and Action Wh does not change the value of
w1−i.state. Hence, the invariant holds.

Action Wx. If p.wi executes Action Wx at time t′, then
wi.state = eating (guard at Action Wx) at t′. Since the
invariant is assumed to hold at t′, this implies w1−i.state =
thinking. Since executing Wx does not change the value of
w1−i.state, the invariant holds.

Action Wp. Executing Action Wp does not change the
values of w0.state and wi.state. Since the invariant holds
at t′ before executing Action Wp, the invariant holds after
Action Wp as well.

Thus shown that the invariant ((w0.state = thinking) ∨
(w1.state = thinking)) holds.

Lemma 10. If p is correct, and a witness thread p.wi

in p eats at time tie, then the other witness thread p.w1−i

eats at time t(1−i)e > tie.

Proof. Let witness p.wi eat at time tie. This enables
Action Wx at p.wi, and p.wi eventually executes Wx. Ac-
tion Wx this sets switch to 1− i, and wi.state to exiting.
From Lemma 9, it follows that when wi executes Action
Wx, w1−i.state = thinking.

Exiting is finite in DX i, so eventually wi.state = thinking.
This enables Action Wh at witness w1−i (because switch =
1− i and w1−i.state = thinking). Let w1−i execute Action
Wh, and w1−i.state = hungry. From Lemma 6 we know that
if the peer subject q.s1−i in DX 1−i is correct, then it eats
for finite time, otherwise it crashes in finite time. Therefore
from the wait-freedom property of DX 1−i, we know that
w1−i eventually eats. Let such time be t(1−i)e > tie.

Lemma 11. If p is correct, then witnesses p.wi∈{0,1}
eat infinitely often.

Proof. Initially switch = 0, w0.state = thinking, and
w1.state = thinking in Alg. 1. This enables Action Wh at
witness p.w0. Upon executing Action Wh, and p.w0.state =
hungry. From Lemma 6, we know that the peer subject
q.s0 in DX 0 eats only for finite time. Therefore, by the
wait-freedom property of DX 0, p.w0 eventually eats at time
(say) t1.

Applying Lemma 10 to p.w0, we know that p.w1 eats at
some time t2 > t1. Applying Lemma 10 to p.w1, we know
that p.w0 eats at some time t3 > t2 > t1, and so on.

Thus successive invocations of Lemma 10 show that p.w0

and p.w1 eat infinitely often.

Lemma 12. If p is correct, then between every consec-
utive pair of witness p.wi’s eating sessions, witness p.w1−i

eats exactly once.

Proof. From Lemma 11, we know that p.wi eats in-
finitely often. Consider p.wi’s two consecutive hungry-eating
sessions during the intervals [th1, tx1] and [th2, tx2]. From

Lemma 9, we know that during p.wi’s hungry-eating ses-
sion, p.w1−i is thinking. From Action Wh, we know that
switch = i at th1 and th2. However, from Action Wx, we
know that p.wi sets switch to 1− i at time tx1. Therefore,
switch is set to i during the interval (tx1, th2). But the only
action that sets switch to i is Action Sx at p.w1−i which is
enabled only when p.w1−i is eating. In other words, p.w1−i

eats at least once between p.wi’s eating sessions.
By applying the above argument for both witnesses, we

see that between every consecutive pair of witness p.wi’s
eating sessions, witness p.w1−i eats exactly once.

Strong Completeness.

Theorem 1. The action systems in Alg. 1 and 2 sat-
isfy strong completeness.

Proof. Consider a run of the action systems in Alg. 1
and 2 where a correct process p monitors a faulty process
q. Since q crashes in finite time, q’s subject threads send
only finitely many ping messages to p. After q crashes, by
wait-freedom of DX i, we know that p’s witness threads eat
infinitely often. From Action Wx in Alg. 1 we know that
every time p.wi eats, it sets havePingi to false. Therefore,
when p.wi is scheduled for the first time after all ping mes-
sages from q.si have been received, it sets havePingi to false.
In all subsequent eating sessions of p.wi, havePingi is always
false (because p.wi does not receive any more ping messages
from q.si). Hence, p.wi permanently suspects q in Action
Wx in Alg. 1. In other words, every crash is eventually and
permanently suspected by all correct processes.

Eventual Strong Accuracy. In order to prove eventual
strong accuracy, we need to show that if p and q are correct,
then eventually p never suspects q. This can happen only if
eventually every time any witness p.wi executes ActionWx,
havePingi is true. We demonstrate that as follows:

Theorem 2. The action systems in Alg. 1 and 2 sat-
isfy eventual strong accuracy.

Proof. Consider a run of the action systems in Alg. 1
and 2 where a correct process p monitors a correct process q.
Let the dining instances DX 0 and DX 1 stop scheduling live
neighbors to eat concurrently after time twx. Let tstable be
the time after which the suffix invariant (si.state = eating)∨
(si.state = eating) from Lemma 8 holds. Consider the time
tstart = max(twx, tstable).

From Lemma 11, we know that the witness threads p.w0

and p.w1 eat infinitely often. Consider a time twi.eat > tstart

such that p.w0 and p.w1 have completed at least one eating
session each since tstart, and some witness thread (say) p.wi

is in its zth eating session. By construction, p.wi’s z − 1st

eating session started after tstart.
From Lemma 12 we know that p.w1−i eats exactly once

between the z−1st and zth eating sessions of p.wi. Let that
be the yth eating session of p.w1−i. By construction (and
Lemma 12) we know that wi.state = thinking during the yth

eating session of p.w1−i, and from Lemma 8 (and the 3WX
of DX i and DX 1−i), we know si.state = eating. However,
from Lemmas 3 and 5 we know that during q.si’s current
eating session, p.wi executes Action Wp exactly once. So,
havePingi = true when q.si exits its current eating session
(because while q.si is eating, p.wi cannot start eating, and
hence cannot set havePing to false). Therefore, when p.wi

starts its zth eating session, havePing = true; hence, when
p.wi executes Action Wx in its zth session, it trusts q.

The above argument applies to any i and z after tstart,
it follows that eventually, when either witness p.w0 or p.w1

is scheduled to eat, it will trust q. From Lemma 11 we
know that p.w0 and p.w1 eat infinitely often. Therefore, p
eventually and permanently stops suspecting q.

8. DISCUSSION
Weakest failure detector for wait-free dining. We

have shown that 3P is necessary to solve WF-3WX . In
conjunction with earlier results demonstrating the sufficiency
of 3P [12, 13], our result shows that the synchronism and
temporal system properties encapsulated byWF-3WX are
equivalent to those encapsulated by 3P.

Potentially infinite eating sessions. In Alg. 2, when
a correct subject q.si eats, it does not exit until receiving
an ack from its peer witness p.wi. However, if p is crashed
(so is p.wi), then q.si never exits, because no ack will be
received. Note that the underlying WF-3WX dining layer
guarantees wait-freedom and eventual weak exclusion only
if correct diners eat for finite time. In the above instance,
even though the subject is correct, it eats for infinite time.
Therefore, the underlying WF-3WX dining layer need not
satisfy its specifications in this instance.

So does this affect the correctness of the above solution?
Actually no, it does not. Note that the crash-fault detection
is performed exclusively by the witness threads. Therefore,
the behavior of the subject threads is material only when
they are being ‘observed’ by their peer witness threads. If
the witness threads crash, then the subject threads are no
longer being observed, and hence their behavior does not
affect the algorithm’s correctness.

Wait-free eventually k-fair dining. A recent result
in [13] demonstrates that 3P is sufficient to solve wait-
free dining for 3WX with eventual k-fairness. Eventual
k-fairness guarantees that every run has an infinite suffix
where no correct hungry process is overtaken by any live
neighbor more than k times. Therefore, in conjunction with
the result in [13], our result implies that wait-freedom and
eventual weak exclusion encapsulate sufficient synchronism
to guarantee eventual k-fairness in scheduling the eating ses-
sions of hungry processes. It also implies the existence of an
asynchronous transformation which can convert a wait-free
eventually exclusive dining solution into a wait-free, eventu-
ally exclusive, and eventually k-fair dining solution.

9. ON PERPETUAL WEAK EXCLUSION
A 2005 paper by Delporte-Gallet et al [4] proves that a

more powerful composition of the Trusting [4] and Strong [3]
failure detectors (T + S) is sufficient to solve the problem
of Fault-Tolerant Mutual Exclusion, which guarantees wait-
freedom for perpetual weak exclusion (�WX); that is, live
neighbors never eat simultaneously. The trusting detector T
satisfies the following properties: (1) strong completeness: T
eventually and permanently suspects all crashed processes,
and (2) trusting accuracy: (a) T eventually and permanently
trusts every correct process, and (b) at all times, if T stops
trusting any process q, then that process q must be crashed.
The strong detector S satisfies: (1) strong completeness:
(just like T above), and (2) perpetual weak accuracy: some
correct process is never suspected by any live process.

The results in [4] prove that T is necessary and T + S is
sufficient to solve Fault-Tolerant Mutual Exclusion (FTME)
in environments where arbitrarily many process may crash.
It remains unknown, however, if T is sufficient or if T +S is
necessary for FTME. Our work has two points of relevance.
First, our reduction can be applied to the case of perpetual
weak exclusion — �WX — to produce an alternative proof
of the necessity of T for FTME. Second, a slight modification
of our reduction extracts an oracle more powerful than T ,
thereby indicating that T alone is not sufficient for FTME.
We sketch both results in the final paragraphs below.

Applying our reduction to �WX actually implements the
trusting oracle T instead of 3P. Consider the following
proof sketch. Let the DX 0 and DX 1 black-box solutions
satisfy FTME (wait-freedom with perpetual weak exclusion).
Initially, witnesses w0 and w1 can take turns eating while
subjects s0 and s1 are still thinking or hungry. During this
finite prefix, the subjects can (and will) be suspected by the
witnesses continuously. By wait-freedom, however, subject
s0 will eventually eat. Once s0 begins eating, witness w0

cannot eat concurrently (due to perpetual weak exclusion).
After s0 eats for the first time, the subjects hand-off their
eating sessions, thereby ensuring that when the witnesses
transit to eating, the havePingi variables are always true.
Thus, the witnesses start trusting any live process q after the
subject q.s0 transits to eating the first time. If q is correct,
then q will be trusted permanently. If q crashes, however,
then by wait-freedom the witnesses will eat infinitely often
and permanently suspect q. Thus, our reduction implements
T if the black-box subroutine implements FTME.

Implementing S|c using FTME requires only a simple
modification of our reduction. Initially, each process q trusts
all processes, and, for each neighbor p, process q initially
schedules only its subject thread q.s0 to become hungry
(which occurs in FTME instance DX 0). Process q does not
schedule any witness threads to become hungry until after
all of its q.s0 subject threads have been scheduled to eat
(that is, q has one subject eating per neighbor p).

This modification preserves strong completeness for S|c,
because the wait-freedom property of FTME guarantees that
(1) all correct hungry subjects will eat in finite time, and so
(2) all correct witnesses will eventually be scheduled, thereby
reducing to the completeness of the unmodified reduction.
For the accuracy property of S|c, let q denote the first correct
process to schedule any witness thread to become hungry.
Suppose this event occurs at time t. No correct process can
suspect q prior to time t, because all processes initially trust
q, and no other correct process has scheduled any witnesses.
Furthermore, no correct process can suspect q after time t.
By hypothesis, each subject q.s0 has already been scheduled
to eat in its respective FTME instance DX 0. The hand-off
mechanism ensures that each q.s0 continues eating until (1)
its ping has been acknowledged, and (2) the corresponding
subject q.s1 begins eating as well. Between each hand-off,
the �WX of FTME prevents neighboring witnesses from
eating more than once, within which time a subsequent ping
from q is always received. Consequently, q is never suspected
by any correct process, which thereby ensures the accuracy
property of S|c.

Applying the foregoing reductions independently, we can
extract (T + S|c) from FTME. It remains to show that T
alone cannot implement S|c. If not, then we can conclude
that T alone is not sufficient to solve FTME.

Proof. Suppose there is a deterministic, asynchronous
reduction to extract S|c from T . Consider three runs of
S|c, where p is correct in run Rp (but q crashes initially),
q is correct in run Rq (but p crashes initially), and both
processes are correct in run Rc. In run Rp, let T at p always
trust p and always suspect q. By strong completeness, S|c
at p permanently suspects q after some time tp. In run Rq,
let T at q always trust q and always suspect p. By strong
completeness, S|c at q permanently suspects p after some
time tq. Let time t = max(tp, tq), and suppose all messages
between p and q are delayed until after time t in run Rc.
T can suspect correct processes for any finite prefix, so up
through time t let (T at p in Rc) = (T at p in Rp), and
let (T at q in Rc) = (T at q in Rq). For p and q, run
Rc is indistinguishable up to time t from runs Rp and Rq,
resp. Thus, at time t in Rc, S|c at p suspects q and S|c at q
suspects p, which contradicts the accuracy property of S|c
that some correct process is never suspected by any correct
process. We conclude that T cannot implement S|c, and so
T cannot be the weakest failure detector for FTME.

10. REFERENCES
[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet,

Hugues Fauconnier, and Sam Toueg. Stable leader
election. In 15th Int’l Conf. on Distributed Computing
(DISC), pp. 108–122. Springer, 2001.

[2] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam
Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685–722, 1996.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. J.
ACM, 43(2):225–267, 1996.

[4] Carole Delporte-Gallet, Hugues Fauconnier, Rachid
Guerraoui, and Petr Kouznetsov. Mutual exclusion in
asynchronous systems with failure detectors. J.
Parallel Distrib. Comput., 65(4):492–505, 2005.

[5] Edsger W. Dijkstra. Hierarchical ordering of sequential
processes. Acta Informatica, 1(2):115–138, Oct 1971.

[6] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[7] Cynthia Dwork, Nancy A. Lynch, and Larry
Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[8] Rachid Guerraoui, Michal Kapalka, and Petr
Kouznetsov. The weakest failure detectors to boost
obstruction-freedom. Distributed Computing,
20(6):415–433, April 2008.

[9] Maurice Herlihy. Wait-free synchronization. ACM
Trans. Program. Lang. Syst., 13(1):124–149, 1991.

[10] Nancy A. Lynch. Fast allocation of nearby resources in
a distributed system. In 12th ACM Symp. on Theory
of Computing (STOC), pp. 70–81, 1980.

[11] Scott M. Pike and Paolo A.G. Sivilotti. Dining
philosophers with crash locality 1. In 24th IEEE Int’l
Conf. on Dist. Comp. Sys. (ICDCS), pp. 22–29, 2004.

[12] Scott M. Pike, Yantao Song, and Srikanth Sastry.
Wait-free dining under eventual weak exclusion. In 9th
Int’l Conf. on Distributed Computing and Networking
(ICDCN), pp. 135–146. Springer, 2008.

[13] Yantao Song and Scott M. Pike. Eventually
k-bounded wait-free distributed daemons. In 37th
IEEE/IFIP Int’l Conf. on Dependable Systems and
Networks (DSN), pp. 645–655, 2007.

